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Abstract
During the past decades, applying deep learning technologies on fashion industry are increasingly the mainstream. Due to the

different gesture, illumination or self-occasion, it is hard to directly utilize the clothes images in real-world applications. In this

paper, to handle this problem, we present a novel multi-stage, category-supervised attention-based conditional generative

adversarial network by generating clear and detailed tiled clothing images from certain model images. This newly proposed

method consists of two stages: in the first stage, we generate the coarse image which contains general appearance information

(such as color and shape) and category of the garment, where a spatial transformation module is utilized to handle the shape

changes during image synthesis and an additional classifier is employed toguide coarse imagegenerated in a category-supervised

manner; in the second stage, we propose a dual path attention-basedmodel to generate the fine-tuned image, which combines the

appearance information of the coarse result with the high-frequency information of the model image. In detail, we introduce the

channel attention mechanism to assign weights to the information of different channels instead of connecting directly. Then, a

self-attentionmodule is employed tomodel long-rangecorrelationmaking thegenerated image close to the target. In additional to

the framework, we also create a person-to-clothing data set containing 10 categories of clothing, which includes more than 34

thousand pairs of images with category attribute. Extensive simulations are conducted, and experimental result on the data set

demonstrates the feasibility and superiority of the proposed networks.

Keywords Generative adversarial network (GAN) � Image-to-image translation � Attention � Clothes generation

1 Introduction

People are increasingly pursuing high-quality life with the

improvement of happiness, and the fashion industry has

gradually entered everyone’s sight. Online shopping has

become an indispensable ingredient of people’s lives

because of its convenience, which allows buyers to pur-

chase what they want without going out. However, there

are still some unsettled problems in purchasing clothing

online. For example, when someone noticed favorite cos-

tumes in magazines or videos, they felt like buying it, but it

is not so easy to get access to it. To handle this problem,

most e-commerce platforms like Taobao now support

image retrieval, which makes it possible to find the target

garment by feeding a photo into the search engine. If the

raw images are used directly for retrieval, the retrieval

performance is difficult to meet people’s requirements, as

in some cases, the photographs may have poor shooting

angles or distorted deformations so that degrade the

retrieval performance. In addition, another disadvantage of

purchasing clothes online is that trying on the desired

garment is an impossible task. People don’t know whether

they are satisfied with the dressing. Both issues will have a

negative impact on the consumer shopping experience.
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In order to handle the above problem, people need to

generate a clear and tiled clothing picture of the clothes in

the picture by means of image-to-image translation

[13, 15, 22, 26, 39, 41, 52]. This is because for most gar-

ments, dozens of characteristic information of the garment

is on the front, and the back or side view contain less

information. As a result, the tiled image has most of the

information that is valuable for retrieval [23–25, 27, 48] or

other learning tasks [46]. In addition, a tiled clothes can

also be further extended to virtual try-on [10, 53] by

replacing the garment on the buyer with the generated tiled

clothing picture, so that the buyer can have an general

impression with the appearance of wearing this dress,

which will greatly improve consumer shopping experience.

Details of the generated images are of critical impor-

tance for the generative model, and the synthetic result of

generative adversarial nets [8] demonstrates its superiority

in producing images that are consistent with human per-

ception. Previous GAN-based methods like [15] have been

employed in scene translations such as day to night, sket-

ches to photos, etc. These tasks all have one thing in

common: the input and output are structurally similar.

However, when the input and output differ greatly in

structure, the network cannot achieve satisfying results.

The tough problem we have to deal with is to translate the

picture of the model wearing the costume into a flat gar-

ment that was taken off the model. This inevitably

encounters structural deformation problems. What’s more,

the input picture of a model may contain multiple kinds of

clothing (tops and pants, jackets, T-shirts, etc.), the net-

work does not know which type is our concern, which will

lead to the generated clothing in a wrong category that is

unexpected to us. In addition, when these images with

multi-category apparel are fed as input to refine details,

plenty of superfluous information (undesired portion such

as unexpected clothes) will undoubtedly affect the gener-

ation performance.

In this paper, motivated by the recently developed

image-to-image translation technique, we propose a two-

stage image generation method for high-quality tiled

clothes generation from dressed person. The first stage

generates an image picture containing the appearance and

category, and is dedicated to solving the shape change and

controllability of the translation result in the image trans-

lation process. The second stage is to refine the coarse

picture produced in the first stage, committed to solving the

intractable issue that exists in the majority of rest methods:

lack of details. The spatial transformer module [16] is

introduced to deal with the negative impact of convolu-

tional neural networks on structural changes that con-

tributes to a poor performance. We introduce this module

into the first phase, without adding too much computational

overhead, and can implicitly transform the feature map in

an end-to-end manner. We constrain the generation process

toward our conditional category by adding a category

condition to the generator and employing an extra classifier

[31] to calculate a category loss. In the second stage, the

adversarial learning method is adopted to refine the rough

picture obtained in the first stage. Both the generated rough

image and the model image are regarded as input of net-

work of the second stage. Therefore, we propose a novel

bi-path attention-based generator which incorporates both

the channel module and the self-attention module. When

the model pictures are fed into the network, quantities of

redundant information (limbs and head) will have a dev-

astating effect on the network performance if all the

information directly shuttled from the encoder to the sub-

sequent decoder like [15]. We introduce attention modules

[12, 50], which allows the network to focus on more

valuable information and transmit the information in a

more efficient manner.

In summary, our contributions are mainly as follows:

1. We propose a novel two-stage class-supervised atten-

tion-based image generation method.

2. In order to capture the structural and category infor-

mation, a spatial transformation module is introduced

in the first stage to mitigate the negative impact of

structural deformation during image transformation. In

addition, steering the network to synthesize clothing

according to the conditional category, and overcoming

the ambiguity of the generated result.

3. In order to refine details and texture, a dual path

generator combined with channel attention module and

self-attention module is proposed. In addition, the

channel attention module is introduced instead of skip

connection and a self-attention module is employed in

the second stage to learn global dependency.

4. A supervised image-to-image translation data set of

more than 34 thousand image pairs is established, each

picture pair containing corresponding category.

In the following few sections, we introduce our paper in

terms of related work, our method, experimental result

analysis, and conclusion.

2 Related work

2.1 Generative model

Before the emergence of GANs, the image generation

model is mainly based on the auto-encoder (AE), which

consists of an encoder and a decoder. The variational auto-

encoder (VAE) [21] solves the problem that AE can only

be reconstructed and cannot generate new images, while

the conditional variational auto-encoder (CVAE) [37] is
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further extended from VAE to overcome the randomness of

the generated result. However, all auto-encoders produce

very blurry results and lack of detail. Ian Goodfellow et al.

proposed GAN [8] which consists of two parts: a generator

and a discriminator, and adopts adversarial learning to

synthesize images that are indistinguishable from real

images. GAN is promising for whose generator produces

images by fitting data distribution. [3, 45] make efforts to

boost the quality of generated pictures. Other efforts made

by [1, 2, 9, 19, 29, 32, 35] concentrate on making training

stable and converge early. There are also abundant

derivatives of GAN which has been proved feasible in

computer vision, such as text-to-image transformation

[33, 49, 53] and image-to-image translation

[13, 15, 22, 26, 39, 41, 52], high-quality image generation

[3, 45], and image super-resolution [22, 28, 41, 44, 51].

2.2 Image-to-image translation

Image-to-image translation is a typical conditional gener-

ative adversarial network [30]. In the original conditional

GAN, the condition is a vector which represents category

or something else while an input image is regarded as the

condition in image translation tasks. The image translation

network is somewhat similar to the function in mathe-

matics. For an input, there is a unique output corresponding

to it after passing through a mapping function, such a

mapping is what our network expects to learn. Pix2pix [15]

is a bi-directional method that can learn a mapping from

input to output or vice versa. Pix2pixHD [39] attempts to

generate high-resolution street view pictures conditioned

on semantic segmentation images. Both [15] and [39] need

to be trained in a supervised way with the costly paired

images. This is a consensus for us that image pairs are

difficult to obtain. Unlike [15, 39] and [22, 41], CycleGAN

[52], UINT [26], MUINT [14], and UGATIT [20] can

realize cross-domain transformation in an unsupervised

manner, e.g., style transfer [17, 52]. Other work like

SRGAN [22], ESRGAN [41] translates the image in low

resolution domain into high resolution domain in a super-

vised way too.

2.3 Attention-based method

After the attention mechanism was introduced into deep

learning, it has been favored by researchers. Attention

mechanism improves the performance of networks by

mimicking the way humans observe things, selectively

focusing on more informative things. The non-local net-

work [40] and self-attention GAN [45] employed in com-

puter vision guide the network to concentrate on the

regions of interest by simulating long-range dependency.

[12, 50] improve the learning of useful features by learning

the importance of different channel features, and suppress

the less valuable features of tasks. The former [40, 45] is

often referred to as spatial attention, while the latter

[12, 50] is referred to as channel attention. There are also

some networks that combine spatial attention and channel

attention, for instance, [4, 7, 43], which use the above two

modules in series or in parallel to acquire regions of

interest. Attention mechanism has been prevalently visu-

alized in classification [12, 43], localization [45], semantic

segmentation [7], image generation [45], object detection

[43], image caption [4], and other tasks of computer vision

[5, 6, 18].

3 Image generation

The proposed method is decomposed into two stages and

each stage has different missions. Detailed network archi-

tecture will be introduced in Sects. 3.1 and 3.2.

3.1 Coarse image generation

3.1.1 Network architecture

On the whole, all image-to-image translation problems can

be summarized as learning a mapping from input image x

to output image y, namely y ¼ f xð Þ, where f �ð Þ represents a
mapping function. Like most other methods, the genera-

tor’s overall framework in the first stage is the prevalently

adopted network: the encoder-decoder structure, as shown

in Fig. 1. The model image is first encoded by the encoder

into a latent representation (in this paper, a vector with

512-dimensional), and then, the latent representation is

decoded by the decoder into the desired result. But dif-

ferent from traditional auto-encoders, we add skip con-

nections between the encoder and the decoder, which is

also termed as a‘U-net’-based [34] structure. In the most

image translation tasks, there is a large quantity of shared

low-level information between input and output such as

color, shape, etc. In our mission, the clothes on the model

in the input picture are the results we interested in, so

shuttling appearance information which was shared by the

input and the output between the mirror layer of the

encoder and the decoder can improve the learning ability of

the network. From some practical results, a simple skip

connection does demonstrate its superiority for some

images in good poses and the model pictures (as shown in

Fig. 6: in the fifth column at the top and the fourth column

at bottom) that have little difference in perspective from

the output picture (front view). However, we observe that

the network performs unsatisfactorily when the model

image was in a side view. This is mainly due to the lack
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ability of being spatially invariant [16] to the model image

in convolutional neural networks.

In order to tackle this problem, we propose to introduce

a learnable spatial transformer module into the network,

which can deal with the deformation or migration problem

during image translation in a way of a relatively low

parameters and computational cost. The architecture of the

spatial transformer module is visualized in Fig. 2. It mainly

consists of three parts: a localization network, a grid gen-

erator, and a bilinear sampler. The localization network

learns the parameter h according to the input data (in our

case, h is a 6-dimensional vector), and the parameter is

transmitted to the next part to generate a transformation

grid. The last bilinear sampler is conditioned on generated

grid and the input data, and the output is obtained by

bilinear interpolation. This module not only transforms

images but also feature maps. What’s more, inserting this

module into any networks does not affect the gradient

backpropagation because the bilinear sampler is differen-

tiable and does not require an additional loss to supervise

the transformation parameter h. In this paper, we insert a

spatial transformer module in the first and last layers of the

network, as shown in the blue rectangle in Fig. 1.

Not only that, in our data set, there are not only the

upper body or lower body images of only one class of

clothing (as shown in Fig. 6: the third and fourth column at

the top), but also the pictures of the whole body of the

model (as shown in Fig. 6: the first column at the top and

the third column at the bottom), which means there are two

or more types of clothing. For this situation, the network is

usually confused, and does not know which type of

clothing image to generate.

Therefore, as for the lack of supervision of the generated

clothing category, we propose that the input of the network

not only needs to include the model image, but also the

clothing category we expect. Add an additional supervisory

signal to the generator to encourage the generator to syn-

thesize the target in a guided way. Therefore, we consider

converting each type of clothing into an n-dimensional

vector in the form of one-hot coding (the i-th class: the i-th

dimension is 1, other dimensions are all 0, where 0\i\n).

We concatenate the category coding before the encoded

latent vector is sent to the decoder to direct the decoder to

decode the particular category of clothing.

Fig. 1 Architecture of network in the first stage

Fig. 2 An overview of spatial transformer module. h is the learnable

transformation parameters. Input and output are images or feature

maps
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3.1.2 Objective function

For image translation problems, traditional metrics that

measure the discrepancy between pixel values, such as the

Manhattan distance (L1 distance) and the Euclidean dis-

tance (L2 distance), can fully satisfy our needs for gener-

ating rough images in the first stage. After comparison, the

L1 distance, which is less susceptible to blurring, is

employed to constrain the deviation between pixels.

Besides, in order to generate the correct category of

clothing, the cross-entropy loss that is widely adopted in

multi-label classification tasks is introduced into the entire

loss function of the first stage. Suppose that the generator

of in the first stage is G1, classifier is C, the input image is

denoted as x, the category condition is denoted as c, and the

ground-truth is expressed as y, the result of the first stage

yco can be expressed as:

yco ¼ G1 x; cð Þ: ð1Þ

Therefore, the content difference Lcontent1 between the

generated result and the target picture can be formulated

as:

Lcontent1 ¼ y� ycok k: ð2Þ

Classification loss Lcls can be calculated as:

Lcls ¼
Xn

i¼1
cco

ið Þ log c ið Þ þ 1� cco
ið Þ

� �
log 1� c ið Þ

� �h i
:

ð3Þ

where n is the number of categories in the multi-label tasks,

in this paper, is predefined as 10, and c ið Þ and c
ið Þ
co is one-hot

coding and predicted category vector by classifier of the i-

th sample. Our objective function can be expressed as:

G1
� ¼ argminG1

lLcontent1 G1ð Þ þ Lcls G1;Cð Þ½ �; ð4Þ

where l is the weight of the content loss. By optimizing the

loss function described above, it is possible to obtain a

coarse image of the desired clothing with the category we

are interested in, as the appearance condition information

for the next stage guiding the network to generate fine

images.

3.2 Fine image generation

3.2.1 Network architecture

Since the coarse picture in the first stage only has a rough

shape and appearance, the second stage refines the rough

picture. The goal is to synthesize clear, photo-realistic

clothing images, and it is a preferable choice to achieve this

goal in a technique that is adversarial learning. In many

different practical applications, [15] has demonstrated its

feasibility in dealing with image translation problems. In

the second stage, we use the pix2pix framework as base-

line, and make some modifications to it. The detailed

structure is shown in Fig. 3.

In our method, there are two images that are fed to the

fine generator, one is the coarse image yco generated in the

first stage containing the appearance information and the

expected category, and the other is the original input x,

which is utilized to provide details that yco does not have,

and then to refine yco. We propose a dual path attention-

based generator which contains three sub-modules: input

encoder, coarse encoder, and decoder. The structure of

coarse encoder is the same as that of input encoder.

However, skip connections between coarse encoder and

decoder are different from input encoder and decoder. If

input encoder transmit the information to the image

decoding layer directly like the first stage, which inevitably

contains a large amount of redundant information (useless

information like the human body in our mission). When

redundant information and the desired information such as

the high frequency information we want are transmitted to

the mirror layer with equal importance, this will unavoid-

ably impair the performance of the network greatly.

Therefore, so as to make the network more focused on the

regions of interest, we introduce a channel attention mod-

ule instead of the original skip connections between input

encoder and decoder while coarse encoder is directly

connected to decoder. The channel attention module [50]

assigns different weights to different channels of feature

maps according to the learned coefficient. The module

learns that assigning higher weights to those informative

channels to represent the information of that channel is of

higher significance. The structure of the channel attention

module is shown in Fig. 4.

Furthermore, most of the previous GAN-based methods

are of relatively small kernel size (no more than 5) for

lower parameter and higher efficiency. In this way, it is

hard to learn the relationship between the parts that are far

away. Learning the global dependencies of images enables

the network to know what to generate. Therefore, we insert

a self-attention module into decoder to learn the relation-

ship between any two pixels. The structure of the self-

attention module is shown in Fig. 5.

For the discriminator, we use the same Markovian dis-

criminator as [15] whose input is the concatenation of input

x and fine output or ground-truth. It does not judge real and

fake of the whole picture like the conventional discrimi-

nator. Instead, it divides the picture into many small pat-

ches, and judges the real and fake of each patch. The

realness of the whole picture depends on the average result

of all the patches, so it is also known as PatchGAN.
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3.2.2 Objective function

Assume that the generator of in the second stage is G2,

discriminator is D, the result of the second stage is yfi,

which can be expressed as:

yfi ¼ G2 x; ycoð Þ: ð5Þ

In addition to the original GAN loss function, like the first

phase, l1 norm is also part of the overall loss function. The

loss function of GAN can be expressed as:

LGAN ¼ logD x; yfið Þ þ log 1� D x; yfið Þð Þ: ð6Þ

Content loss is represented as:

Lcontent2 ¼ y� yfik k: ð7Þ

Furthermore, the perceptual loss [17, 22] Lpe is added to

overcome the ambiguity caused by l1 loss on the generated

results. The perceptual loss measures the difference

between the output of the network and ground-truth in the

high-dimensional feature space and optimizing perceptual

loss encourages the network to generate more high-fre-

quency details. We use the pre-trained VGG-19 [36] model

on the ImageNet as a high-dimensional feature space

extractor to calculate the absolute difference (in L1 sense)

between the two extracted feature maps. So, the perceptual

loss Lpe can be expressed as:

Lpe ¼ VGG yð Þi;j�VGG yfið Þi;j
���

���; ð8Þ

where VGGð�Þi;j represents feature maps obtained from the

j-th convolution layer after rectified linear unit before the i-

th pooling layer within VGG-19 network. The whole loss

function can be expressed as:

Ltotal ¼ aLGANþbLcontent2þLpe; ð9Þ

Fig. 3 An overview architecture of our proposed dual path attention-based generator and Markovian discriminator in the second stage. The

generator incorporates three sub-modules: coarse encoder, input encoder, and decoder

Fig. 4 Architecture of channel attention module, where input is

feature maps within input encoder and output feature maps are fed

into mirrored layer within decoder, � indicates matrix multiplication

Fig. 5 Architecture of self-attention module, where input is feature

maps within decoder with length and width of 64, � represents matrix

multiplication. Attention map is activated with softmax on each row
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where a and b are hyper parameter, representing the weight

of each loss.

4 Simulations

4.1 Data set description and simulation settings

4.1.1 Data set description

To our best knowledge, the existing open clothing data set

such as the comprehensive data set: DeepFashion [27] and

the multi-view clothing data set: MVC [23] are unable to

meet our requirements: paired model pictures and corre-

sponding tiled clothes on the model. Therefore, for the

purpose of implementing our experiment, we have to surf

the Internet to collect garment images through a web

crawler program and build a new data set by our own. After

comparing the pictures of large-scale e-commerce plat-

forms at home and abroad such as Zalando, Taobao,

Jingdong, we selected the pictures on the German e-com-

merce platform as our data set because of its high quality

and variety. Then, those images that satisfy our experi-

mental needs were screened out and the corresponding

category tags are labeled manually. After the above pro-

cess, our final data set consists of 34,762 pairs of images, of

which 32,747 pairs are employed in training and the

remaining image pairs are regarded as testing set. In order

to enhance the robustness of the network, we select 10

types of garment in this newly built data set, namely

T-shirts, shirts, jackets, coats, blouses, jumpsuits, jeans,

trousers, skirts, and dresses. At the time, we have the

quantity of each kind of clothing balanced to obviate the

negative impact that samples imbalance will bring about on

the experimental results, so the amount of each type of

sample pairs is controlled artificially more than 1000. The

number of each category and some sample pairs are shown

in Fig. 6.

4.1.2 Implementation

The training and testing of this paper is implemented on

Tensorflow with a NVIDIA TITAN V GPU. Similar with

other GANs, Adam optimizer, the prevalently used opti-

mizer in GANs is employed to optimize loss functions with

a learning rate of 0.0002 and a momentum of 0.5. All

weight parameters are initialized with normal distribution

whose mean value is 0 and standard deviation is 0.02.

Batch size is set as 1 to ensure a one-to-one correspondence

between input and output. All image pairs in training set

are trained for 200 epochs. And in order to avoid overfit-

ting, we utilize random clipping to 256� 256 for data

augmentation after resizing to 286� 286 and dropout on

the last few layers of the decoder in both two stages. We

choose feature maps in VGG19 �ð Þ5;4. Hyper parameter l in

the first stage is defined as 100. Different weight of each

loss a and b are set as 1 and 100. The self-attention module

is located between the second to last and the third to last

decoding layers within decoder in the fine generator, with

the input feature map size of 64� 64.

4.1.3 Evaluation metrics

Assessing the performance a generative model such as

GANs is an intractable mission. There is no standard

evaluation metric to measure the performance of GANs

since GAN proposed. The majority of initial evaluations

are based on subjective feelings. For traditional GAN

models, the quality and diversity of the generated images is

equally important. The subsequent Inception Score (IS)

[35] and Fréchet Inception Distance (FID) [11] are two

widely used indicators. FID is obtained by calculating the

Fréchet distance between two Gaussian distributions sim-

ulated by output and ground-truth mean and covariance. In

contrast to Inception Score, Fréchet Inception Distance is

more sensitive to mode collapse and is more robust to

noise. Therefore, FID is regarded as one of evaluation

metrics for its ascendancy which can be formulated as:

FID y; yfið Þ ¼ ly � lyfi
�� ��2

2
þTr Cy þ Cyfi þ 2 CyCyfi

� �1
2

h i

ð10Þ

where l �ð Þ represents mean value, C �ð Þ represents covari-

ance, Tr means trace in linear algebra.

However, for conditional GAN, not only the quality of

the generated image is required to be high, but also the

conditions are met. Our objective is to acquire garment

images that are as similar as possible to ground-truth.

Consequently, we employ another evaluation metric

structural similarity (SSIM) [42] which measures image

similarity from the aspects of brightness, contrast, and

structure, and can better express the subjective feelings of

individuals. It can be expressed as:

L y; yfið Þ ¼
2lylyfi þ C1

l2y þ l2yfi þ C1

C y; yfið Þ ¼ 2ryryfi þ C2

r2y þ r2yfi þ C2

S y; yfið Þ ¼ ryyfi þ C3

ryryfi þ C3

SSIM y; yfið Þ ¼ L y; yfið Þ � C y; yfið Þ � S y; yfið Þ

ð11Þ

where ly, lyfi , ry, ryfi , ryyfi indicate the mean of ground-

truth and output, the variance of ground-truth and output,

the covariance of ground-truth and output, respectively, C1,
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C2 and C3 are predefined constant. In our experiments,

hyper parameters C1, C2 and C3 are defined as 6.5025,

58.5225, and 29.26125, respectively. And L y; yfið Þ,
C y; yfið Þ and S y; yfið Þ indicate brightness, contrast, and

structure similarity. SSIM, with values between 0 and 1, is

positively correlated with image similarity, which means

that the higher the similarity, the closer SSIM is to 1.

4.2 Comparisons

For the purpose of demonstrating the superiority of our

proposed framework, we conduct some additional experi-

ments on the same data set with other alternative methods.

We compare our results with auto-encoder, pix2pix, con-

ditional GAN, CatGAN [47], and pix2pixHD qualitatively

and quantitatively.

4.2.1 Qualitative results

The comparison results of different generative models can

be visualized in Fig. 7. As is shown in Fig. 7, auto-encoder

(Column 3) can only produce blurry images similar to the

approximate shape of the target clothing for the reason that

it doesn’t how to render the details of apparel. Our method

in first stage (Column 8) modifies an encoder-encoder

structure by adding a spatial transformer module, and it is

not difficult to observe that our coarse generator can not

only obtain the rough shape, what’s more, but also produce

more details. Approaches with adversarial learning gener-

ate shaper edges and create more details, but also suffer

defective artifacts, which lead to unnatural pictures. Pix2-

pix (Column 4) produces garment images with more sharp

details compared to auto-encoder while generating clothing

of the wrong category sometimes, as is visualized in row 6.

Results of methods such as conditional GAN (Column 5)
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#3982

Shirts
#3008

Jackets
#4053

Coats
#3793

Blouses
#4181

M
od

el
C
lo
th

in
g

Cat. Jeans
#3639

Trousers
#3421
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Fig. 6 The number of different

kinds of clothing in our data set.

The quantity of different

categories of clothing is

controlled as much as possible
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Fig. 7 Qualitative comparison results of different methods, where AE represents auto-encoder, GT denotes ground-truth, HD denotes

pix2pixHD. The column of stage2 is our final results
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and CatGAN (Column 6) manifest that though those means

generate garment items in correct category, large amounts

of texture on clothes are distorted or even lost. Pix2pixHD

(Column 7) is a leading method which synthesizes high

resolution images while retaining abundant undistorted

texture. However, pix2pixHD does not input any category

supervision information which may result in generating

clothing in an incorrect category. In contrast to precedent

methods, our newly proposed model (last column) gener-

ates detailed tiled results correctly and preserves regular

texture approximate to the target, demonstrating the

effectiveness of our novel network.

4.2.2 Quantitative results

Our experimental results are also quantitatively compared

using the metrics FID and SSIM. As is shown in Table 1,

our method is significantly ahead of other methods with

FID and SSIM but lags marginally behind pix2pixHD with

SSIM. Compared with pix2pixHD, however, our training

time is less than three quarters of its time with similar

performance. This also indicates the efficiency of our

approach.

4.2.3 Generating specific category clothing

We check whether this generative model can really output

clothing according to the category in model images with

multiple categories. As visualized in Fig. 8, as for hard

examples with multiple categories of clothing, our method

is capable of generating clothing based on the category, but

multiple types of clothing also inescapably have negative

consequences for our results to some extent. Consequently,

it is obviously inspected that the most generated clothing

pictures have recognizable shape but only few details and

texture.

4.2.4 Ablation study

In this part, we explore how the absence of spatial trans-

former module and channel attention module in our net-

work will affect the performance of our method. Also, we

attempt to train our method in an end-to-end manner for

convenience, and compare the results of the two training

methods. All comparison results are summarized in

Table 2.

w/o spatial transformer module (STM) In this experiment,

the spatial transformer module is not taken into consider-

ation to investigate the function of spatial transformer

module.

w/o channel attention module (CAM) In addition, this

portion investigates the impact of channel attention module

on our method by shuttling information directly through

skip connections.

w/o self-attention module (SAM) Besides, this experiment

explores the impact of self-attention module on our

method. We compare the gap between our model with

SAM and without SAM.

one stage versus two stages We integrate this two-stage

method into a one-stage way to analyze the performance of

single-stage and multi-stage methods or whether the single-

stage approach will have a negative impact on the network.

As shown in Table 2, the absence of any of the three

modules has somewhat damage to the generated results. In

contrast with the absence of SAM and CAM in the second

stage, the disappearance of STM in the first stage has less

negative impact on the experimental results. However,

there is a significant decline in quantitative results of our

framework without all three aforementioned modules, no

matter in FID or SSIM. In view that the cumbersome

training manner of multi-stage techniques, we integrate

three modules into a single-stage method empirically and

make an extra survey. The experimental result shows that

mode collapse occurs in the integrated one-stage method,

which directly leads to excessive FID value. These ablation

studies confirm the novelty and effectiveness of our

approach.

4.2.5 Discussion on different categories

By observing the experimental results, we find that the

generation performance of different types of clothing on

our model is uneven. In order to explore the differences in

the results test on data set between different types of

clothing in our method, the test set is divided into 10

portions according to their category. The quantitative dis-

crepancy between different categories of clothing is shown

in Table 3 and plotted in Fig. 9.

From those quantitative statistics, we can draw a con-

clusion that jeans and trousers, which have less features,

Table 1 Quantitative

comparison results between

other methods and our method

Methods AE cGAN pix2pix CatGAN HD Stage1 Stage2

FID 1.438 0.341 0.280 0.273 0.257 0.365 0.207

SSIM 0.503 0.581 0.683 0.680 0.774 0.707 0.771

HD represents pix2pixHD. Bold indicates the best result
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most of them are in the same shape with few patterns;

perform well on both metrics, while other categories per-

form relatively not so well as jeans and trousers, which

may be due to their different patterns on clothes that are

intractable to learn. Blouses perform unsatisfactory on both

metrics for the reason that most blouses not only have

various patterns on it, but also range in diverse shapes,

which undermines the performance.

4.3 Application

Virtual try-on is an inevitable choice for the future devel-

opment of the fashion industry, which not only enables

consumers who purchase apparel online to try-on clothing,

but also allows customers to know the appearance after

trying on without undressing in the real store, significantly

improving customers’ experience. Virtual try-on can be

considered as an extension of our work, the state-of-the-art

virtual dressing method called cp-vton [38] is employed to

clarify the superiority and necessity of our method, and our

method is of high value in practical environment.

The cp-vton is a two-stage virtual dressing method, the

first stage is to learn a mapping from the target garment

Input Category: Upper Category: Lower Input Category: Upper Category: Lower
Target Output Target Output Target Output Target Output

Fig. 8 Results of the same input with different category. Upper and lower are general terms used to simplify the drawing. In our experiment, the

input category is one of all 10 categories

Table 2 Ablation studies on spatial transformer module, self-attention

module, and channel attention module

FID SSIM

Ours w/o STM CAM SAM 0.312 0.691

Ours w/o STM 0.223 0.757

Ours w/o CAM 0.270 0.743

Ours w/o SAM 0.248 0.750

One stage 2.496 0.585

Ours 0.207 0.771

In addition, the comparison between single stage and multi-stage of

our approach is visualized in the fifth row and the sixth row. Bold

indicates the best result

Table 3 SSIM and FID

measured on different kinds of

clothing in our data set

T-shirts Shirts Jackets Coats Blouses Jeans Trousers Skirts Jumpsuits Dresses

SSIM 0.710 0.736 0.777 0.817 0.683 0.810 0.789 0.824 0.796 0.809

FID 0.334 0.347 0.418 0.490 0.513 0.134 0.361 0.409 0.346 0.399

Bold indicates the best result of different categories

Fig. 9 SSIM and FID line chart of different types of clothing
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picture to a warped one, which makes the target image has

the same shape with clothing on person, and then, utilizing

synthetic warped clothing and person representation as

input to refine at the second stage. The result images after

virtual try-on is displayed in Fig. 10. The fourth and eighth

columns are try-on results test on our generated tiled

clothes, which further proves the feasibility of our method.

5 Conclusion

This paper explores a novel two-stage solution toward

image-to-image translation from model to tiled clothing.

The first stage introduces a spatial transformer module and

a classifier, which manages to generate coarse results in

specified input category and preserve as much appearance

information as possible. At the second stage, channel

attention modules and the self-attention module are inser-

ted into fine generator which enables fine generator to

concentrate on informative parts and employing the

adversarial learning fashion generates sharper details.

Comprehensive experiments conducted on our newly built

data set demonstrate the overall framework accurately

synthesizes high-fidelity garment images that conserve

texture of input without much distortion. Our approach is

capable of achieving similar performance to state-of-the-art

supervised image-to-image translation method but takes

less training time. In conclusion, our network achieves

Target
person

Target
clothes

Our
results

Warped
clothes

Try-on
results

Target
person

Target
clothes

Our
results

Warped
clothes

Try-on
results

Fig. 10 Results of the same input with different categories. Upper and lower are general terms used to simplify the drawing. In our experiment,

the input category is one of all 10 categories
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excellent performance both quantitatively and qualitatively

on our data set and is an effective and efficient scheme.
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