
Published as a conference paper at ICLR 2024

AUX-NAS: EXPLOITING AUXILIARY LABELS WITH
NEGLIGIBLY EXTRA INFERENCE COST

Yuan Gao1, Weizhong Zhang2, Wenhan Luo3, Lin Ma4, Jin-Gang Yu5, Gui-Song Xia1∗, Jiayi Ma1
1Wuhan University, 2Fudan University, 3HKUST, 4Meituan, 5South China University of Technology
{ethan.y.gao, whluo.china, forest.linma, jyma2010}@gmail.com,
weizhongzhang@fudan.edu.cn, jingangyu@scut.edu.cn, guisong.xia@whu.edu.cn

ABSTRACT

We aim at exploiting additional auxiliary labels from an independent (auxiliary)
task to boost the primary task performance which we focus on, while preserving a
single task inference cost of the primary task. While most existing auxiliary learn-
ing methods are optimization-based relying on loss weights/gradients manipula-
tion, our method is architecture-based with a flexible asymmetric structure for the
primary and auxiliary tasks, which produces different networks for training and
inference. Specifically, starting from two single task networks/branches (each rep-
resenting a task), we propose a novel method with evolving networks where only
primary-to-auxiliary links exist as the cross-task connections after convergence.
These connections can be removed during the primary task inference, resulting in
a single task inference cost. We achieve this by formulating a Neural Architec-
ture Search (NAS) problem, where we initialize bi-directional connections in the
search space and guide the NAS optimization converging to an architecture with
only the single-side primary-to-auxiliary connections. Moreover, our method can
be incorporated with optimization-based auxiliary learning approaches. Extensive
experiments with six tasks on NYU v2, CityScapes, and Taskonomy datasets us-
ing VGG, ResNet, and ViT backbones validate the promising performance. The
Codes are available at https://github.com/ethanygao/Aux-NAS.

1 INTRODUCTION

In this paper, we tackle the practical issue of auxiliary learning, which involves improving the perfor-
mance of a specific task (i.e., the primary task) while incorporating additional auxiliary labels from
different tasks (i.e., the auxiliary tasks). We aim to efficiently leverage these auxiliary labels to en-
hance the primary task’s performance while maintaining a comparable computational and parameter
cost to a single-task network when evaluating the primary task.

Our problem is closely related to Multi-Task Learning (MTL) but has two distinct practical require-
ments: 1) only the performance of the primary task, rather than that of all the tasks, is of our interest,
and 2) we aim to maintain a single-task cost during the inference. For example, we may primarily
concerned with the semantic segmentation performance but have auxiliary depth labels available.
The question is that can we leverage those auxiliary labels to improve the primary task, while pre-
serving the inference cost for the primary task similar to a single-task network?

The primary obstacle to achieving these goals is the presence of the inherent negative transfer, which
is caused by the conflict gradients from different tasks that flow to the shared layer Ruder (2017);
Ruder et al. (2019); Vandenhende et al. (2020b). To alleviate the negative transfer, most existing
auxiliary learning methods are optimization-based, which formulates a shared network and deals
with the conflicted gradients to the shared layer by modifying the auxiliary loss weights or gradients
Du et al. (2020); Liu et al. (2022); Navon et al. (2021); Verboven et al. (2020); Shi et al. (2020).
However, two most recent studies independently show that it is challenging to solve the negative
transfer solely by manipulating the loss weights or gradients Xin et al. (2022); Kurin et al. (2022).

∗Corresponding Author.

1

Published as a conference paper at ICLR 2024

Figure 1: Overview of the proposed methods. Our methods are based on an asymmetric architec-
ture that employs different networks for training and inference, where we exploit gradients and/or
features from the auxiliary task during the training, and preserve a single-task cost for evaluating
the primary task. Our first method (Leftmost) leverages the auxiliary gradients. Our second method
(Rightmost) exploits both auxiliary features and gradients, where the auxiliary-to-primary connec-
tions (green dash lines) are gradually pruned out by NAS, resulting in a converged architecture with
only primary-to-auxiliary connections (the line widths indicate the converged architecture weights).
Finally, the primary-to-auxiliary connections, as well as the auxiliary branch, can be safely removed
to obtain a single task network (Middle) to inference the primary task. The network arrows indicate
the directions/inverse directions of the feature/gradient flow. (Best view in colors.)

Instead, the architecture-based methods with soft parameter sharing assign separated task-specific
model parameters, which avoids the conflicting gradients from the root Shi et al. (2023). Therefore,
we aim to better solve the negative transfer using the soft parameter sharing based architectures.
In other words, we propose to learn a separate set of parameters/features for each task to avoid the
negative transfer, where different primary and auxiliary features interact with each other. However,
it is challenging to achieve a single-task inference cost with separate parameters for different tasks,
as the primary and auxiliary networks rely on each other as input to generate higher-level features.

The above analysis inspires us to design an asymmetric network architecture that produces change-
able networks between the training and the inference phases, i.e., the training network can be more
complex to better exploit the auxiliary labels, while those auxiliary-related computations can be re-
moved during the inference. Starting with multiple single-task branches (each for one task), our
key design is to ensure that the network is asymmetric and only includes directed acyclic primary-
to-auxiliary forward connections. This allows us to safely remove inter-task connections during
primary task inference, resulting in a multi-task level performance and a single-task inference cost.

Motivated by this, our first method exploits the gradients from the auxiliary task as extra regulariza-
tion to the primary task, while those auxiliary computations can be removed during the inference as
the gradients are no longer required. We implement this by establishing multiple layerwise forward
connections from the primary to the auxiliary tasks, where the auxiliary task leverages the features
from, and thus back-propagates the gradients to, the primary task, as shown in Fig. 1 (Left).

The follow-up question is that can we harness both the features and gradients from the auxiliary
task during the training, while still maintaining a single-task cost in the inference? Fortunately, this
can be achieved by training an evolving network with a novel Neural Architecture Search (NAS)
algorithm that employs asymmetric constraints for different architecture weights. Specifically, the
NAS search space is initialized to include all bi-directional primary-to-auxiliary and auxiliary-to-
primary connections. We then impose `1 constrains on the auxiliary-to-primary architecture weights
to gradually prune them out during the search procedure. We illustrate this in Fig. 1 (Right).

Both of our proposed methods are general-applicable to various primary-auxiliary task combina-
tions1 with different single task backbones. Moreover, the proposed methods are orthogonal to,
and can be incorporated with, most existing optimization-based auxiliary learning methods

1Specifically, given the primary and auxiliary task(s), we do not assume how much they are related. Instead,
our methods are designed to automatically learn what to share between the tasks.

2

Published as a conference paper at ICLR 2024

MTL & AL
Methods

Optimization-based

For MTL

Chen et al. (2018; 2020); Guo et al. (2018); Kendall et al.
(2018); Kurin et al. (2022); Royer et al. (2023); Sener &
Koltun (2018); Suteu & Guo (2019); Liu et al. (2019d;

2021a;b; 2022); Lin et al. (2022; 2019); Xin et al. (2022)

For AL
Chen et al. (2022); Dery et al. (2021; 2023); Du et al.

(2020); Liu et al. (2022); Navon et al. (2021); Shi
et al. (2020); Sun et al. (2020); Verboven et al. (2020)

Arch-based

Hard

For MTL
Bruggemann et al. (2020); Guo et al. (2020); Hashimoto et al. (2016);

Kokkinos (2017); Liu et al. (2019d;e); Maninis et al. (2019); Van-
denhende et al. (2020a); Xu et al. (2018); Yang & Hospedales (2017)

For AL N/A

Soft
For MTL Gao et al. (2020; 2019); Misra et al. (2016); Ruder et al. (2019)

For AL Our Method

Virtual Aux-Label Gen. For AL Liu et al. (2019c; 2022); Navon et al. (2021)

Arch-based Methods Ours Gao et al. (2019; 2020) Liu et al. (2019d) Sun et al. (2020)Misra et al. (2016); Ruder et al. (2019) Maninis et al. (2019)
(Soft) (Soft) (Hard) (Hard)

Inference FLOPs N (K + 1)N + (K + 1)KM/2 N +M ≤ N

Table 1: The taxonomy of our method in the MTL and AL areas (Top), and the inference FLOPs of
our method and the representative architecture-based ones (Bottom). AL, Soft/Hard mean Auxiliary
Learning, Soft/Hard Parameter Sharing. N is the FLOPs for a single task, K is the number of
auxiliary tasks, and M is the fusion FLOPs for each task pair in Gao et al. (2019; 2020); Misra et al.
(2016); Ruder et al. (2019), or the extra attention FLOPs in Liu et al. (2019d); Maninis et al. (2019).

Du et al. (2020); Liu et al. (2022); Navon et al. (2021); Verboven et al. (2020); Shi et al. (2020). We
validate our methods with 6 tasks (see Sect. 4), using VGG-16, ResNet-50, and ViTBase backbones,
on the NYU v2, CityScapes, and Taskonomy datasets. Our contributions are three-fold:

• We tackle the auxiliary learning problem with a novel asymmetric architecture, which pro-
duces different networks for training and inference, facilitating a multi-task level perfor-
mance with a single-task level computations/parameters.

• We implement the above idea with a novel training architecture with layerwise primary-
to-auxiliary forward connections, where the auxiliary task computations provide additional
gradients and can be safely removed during the inference.

• We propose a more advanced method with evolving architectures to leverage both the aux-
iliary features and gradients, where the auxiliary-to-primary connections can be gradually
cut off by a NAS algorithm with a novel search space and asymmetric regularizations.

1.1 TAXONOMY OF OUR METHODS

The taxonomy of our methods in both MTL and auxiliary learning areas is illustrated in Table 1.
Our methods fall under the category of architecture-based methods for auxiliary learning with a
soft-parameter sharing scheme. We note that the virtual aux-label generation methods operate in a
distinct context from ours without auxiliary labels, and thus are beyond our scope.

In contrast to all the existing auxiliary learning methods which focus on designing effective opti-
mization strategies, we instead to explore novel auxiliary learning architecture design, for which its
objective can be freely integrated with any optimization-based methods, as validated in Sect. 4.1.

While architecture-based methods are generally better at migrating negative transfer Shi et al.
(2023), there is few (if any) approach designed for auxiliary learning except for ours . Moreover,
our methods leverage soft parameter sharing, which further alleviates the negative transfer compared
with its hard parameter sharing counterpart Ruder (2017), by implementing independent model pa-
rameters. While independent model parameters often result in an increased inference cost as outlined
in Table 1 (Bottom), our methods are different from them by preserving a single-task inference cost.

2 RELATED WORK

Multi-Task Learning. MTL aims to improve the performance of all input tasks Long et al. (2017);
Kokkinos (2017); Zamir et al. (2018), which can be categorized into Multi-Task Optimizations

3

Published as a conference paper at ICLR 2024

(MTO) and Multi-Task Architectures (MTA) Ruder (2017); Vandenhende et al. (2020b). The multi-
task optimization methods manipulate the task gradients/loss weights to tackle the negative transfer
Kendall et al. (2018); Chen et al. (2018); Liu et al. (2019d); Lin et al. (2022); Chen et al. (2020); Guo
et al. (2018); Sener & Koltun (2018); Lin et al. (2019); Liu et al. (2021b); Suteu & Guo (2019); Liu
et al. (2021a; 2022); Royer et al. (2023). Our methods are orthogonal to MTO methods and follow
the MTA category, i.e., learning better features for different tasks via elaborated Hard or Soft Param-
eter Sharing (HPS or SPS) network architectures Misra et al. (2016); Ruder (2017); Xu et al. (2018);
Ruder et al. (2019); Gao et al. (2019); Maninis et al. (2019); Gao et al. (2020); Liu et al. (2019d);
Vandenhende et al. (2020b;a); Guo et al. (2020); Bruggemann et al. (2020); Yang & Hospedales
(2017); Kokkinos (2017); Hashimoto et al. (2016); Liu et al. (2019e). Our methods leverage SPS
scheme Misra et al. (2016); Ruder et al. (2019); Gao et al. (2019; 2020), which uses separate model
weights for each task to better tackle the negative transfer with a single-task inference cost.

Auxiliary Learning. Most existing auxiliary learning methods are optimization-based, which use
a shared feature set with auxiliary gradients/loss weights manipulation Liebel & Körner (2018); Du
et al. (2020); Navon et al. (2021); Verboven et al. (2020); Shi et al. (2020); Liu et al. (2022); Chen
et al. (2022); Sun et al. (2020); Dery et al. (2021). Most recently, Dery et al. (2023) proposed to
search for appropriate auxiliary objectives from a candidate pool and achieves remarkable perfor-
mance. Instead, our methods learn a unique feature set for each task, which can integrate with those
methods. Recent works generate virtual auxiliary labels Liu et al. (2019c); Navon et al. (2021); Liu
et al. (2022), which have a very different setting from ours and is thus beyond our scope.

Network Pruning & Neural Architecture Search. Network pruning aims at removing unimportant
layers without severely deteriorating the performance Han et al. (2016); He et al. (2017); Liu et al.
(2017); Luo et al. (2017); Ye et al. (2018); Gordon et al. (2018). As the pruning process is crucial for
the final performance Frankle & Carbin (2019), our algorithm gradually prunes primary-to-auxiliary
connections by a single-shot gradient based NAS method Guo et al. (2019); Pham et al. (2018);
Saxena & Verbeek (2016); Bender et al. (2018); Liu et al. (2019b); Xie et al. (2019); Akimoto et al.
(2019); Wu et al. (2019); Zhang et al. (2019); Liu et al. (2019a); Mei et al. (2020); Gao et al. (2020).

3 METHODS

In this section, we propose two novel methods exploiting the auxiliary labels to enhance our primary
task, while keeping a single task inference cost. Based on the soft parameter sharing architecture, our
key design is an asymmetric architecture which creates different networks for training and inference,
i.e., the training architecture is more complex to exploit the auxiliary labels, while those auxiliary-
related computations/parameters can be safely removed during the primary task inference.

In the following, we first discuss our asymmetric architecture design. Then, we implement two
novel algorithms, where the first method exploits the auxiliary gradients, and the second method
leverages both the auxiliary features and gradients in an evolving network trained by a novel NAS
algorithm. After that, we implement the feature fusion operations. Finally, we provide a taxonomy
of our methods within the areas of both MTL and auxiliary learning.

3.1 THE ASYMMETRIC ARCHITECTURE WITH SOFT PARAMETER SHARING

Figure 2: The asymmetric primary-auxiliary ar-
chitecture with soft parameter sharing. (Best view
in colors.)

We tackle auxiliary learning by the
architecture-based methods. Due to its
merit of better migrating the negative trans-
fer, our methods follow the soft parameter
sharing architecture, where different tasks
exhibit separated network branches (i.e., in-
dependent/unshared network parameters) with
feature fusion connections across them Ruder
(2017); Vandenhende et al. (2020b).

Given a primary task and an auxiliary task, the
widely used soft parameter sharing structure in
MTL is shown in Fig. 2 (Left). Let P fea

i and
Afea
i be the primary and auxiliary features for

4

Published as a conference paper at ICLR 2024

the i-th layer, and P grad
i and Agrad

i be the corresponding gradients, then the forward and the back-
ward for Fig. 2 (Left) are Eqs. 1 - 4, where OP = [OPP ,OPA] and OA = [OAP ,OAA] are
the learnable fusion operations parameterized by the model weights θ, and dO·/dθ are the corre-
sponding derivatives. Equation 1 shows that the primary feature from the higher layer i takes both
the primary and the auxiliary features from the i − 1th layer. Thus, the auxiliary branch cannot be
removed when inferencing the primary task in this case.

Symmetric, Fig. 2 (Left):
P fea
i = OP [P fea

i−1, A
fea
i−1]

> = OPPP fea
i−1 +OPAAfea

i−1, (1)
Afea
i = OA[P fea

i−1, A
fea
i−1]

> = OAPP fea
i−1 +OAAAfea

i−1, (2)

P grad
i−1 = dOPP

dθ P grad
i + dOAP

dθ Agrad
i , (3)

Agrad
i−1 = dOPA

dθ P grad
i + dOAA

dθ Agrad
i , (4)

Asymmetric, Fig. 2 (Right) (Ours):
P fea
i = P fea

i−1, (5)
Afea
i = OA[P fea

i−1, A
fea
i−1]

> = OAPP fea
i−1 +OAAAfea

i−1, (6)

P grad
i−1 = P grad

i + dOAP

dθ Agrad
i , (7)

Agrad
i−1 = dOAA

dθ Agrad
i . (8)

Since the gradients are no longer required during the inference, we design an asymmetric soft pa-
rameter sharing structure, which enables removing the auxiliary computations during the inference.
As shown in Fig. 2 (Right), we propose to only exploit the auxiliary gradients (rather than features)
as additional regularization for the primary task. According to the corresponding forward (Eqs. 5
and 6) and backward (Eqs. 7 and 8), Eq. 7 shows the auxiliary gradients are used to train the primary
task while Eq. 5 enables to maintain a single-task cost during the primary task inference.

Remark 1 The above analysis indicates that the structure for our problem should follow Fig. 2
(Right). We implement two methods in Sects. 3.2 and 3.3. Sect. 3.2 directly applies Fig. 2 (Right),
while Sect. 3.3 establishes an evolving architecture that is initialized with bi-directional inter-task
connections as Fig. 2 (Left), then the auxiliary-to-primary connections are gradually cut off using
NAS during training, resulting in a converged structure as Fig. 2 (Right).

3.2 THE AUXILIARY GRADIENT METHOD

Starting from two independent/unshared single task networks like Misra et al. (2016); Gao et al.
(2019); Ruder et al. (2019), our first method implement Eqs. 5 - 8 with moderate extension by
inserting multiple layerwise primary-to-auxiliary connections (representing the forward feature fu-
sion) between the two branches. We denote this method as the Auxiliary Gradient method (Aux-G).

Our training architecture is shown in Fig. 1 (Left). We use a fusion operation on each layer of the
auxiliary branch, which takes multiple features as input and produces a single output feature. As
a result, it enables multiple inter-task connections pointing to the same sink node of the auxiliary
branch, which in turn allows multiple gradients routing to the primary branch.

Denoting the auxiliary task feature from the (i − 1)-th layer as Ai−1, and the primary feature from
the j-th layer as Pj where j ≤ i, the fused auxiliary feature at i-th layer Ai is:

Ai = OA
(
Ai−1, α0,iP0,i, ..., αi−1,iPi−1,i

)
, (9)

where O is the fusion operation, whose implementation will be discussed in Sect. 3.4. αj,i is a
binary indicator representing the location of the primary-to-auxiliary connection, i.e., αj,i is 1 if
there exists a connection from j-th primary layer to i-th auxiliary layer, otherwise, αj,i is 0.

3.3 THE AUXILIARY FEATURE AND GRADIENT METHOD WITH NAS

We further extend Aux-G to exploit both auxiliary features and gradients via an evolving architec-
ture trained by a novel NAS algorithm. Being initialized with bi-directional connections like Fig.
2 (Left), our NAS method guides the architecture converging to Fig. 2 (Right) with only primary-
to-auxiliary connections, which can be removed during the primary task inference. We denote this
method as the Auxiliary Feature and Gradient method with NAS (Aux-NAS).

Remark 2 Our search space applies bi-directional connections (primary-to-auxiliary and
auxiliary-to-primary) at every layer between the two fixed single task backbones.

Such search space design enables us to exploit both the features and the gradients from the auxiliary
task, which also exhibits two additional merits: i) the proposed search space is general-applicable to

5

Published as a conference paper at ICLR 2024

any primary and auxiliary task combinations as it searches the general feature fusing scheme, and
ii) it efficiently exploits the layerwise features of each task without introducing negative transfer.

Remark 3 We also propose a novel search algorithm that facilitates the evolving architectures con-
verging to a model where only the primary-to-auxiliary connections exist between the tasks. There-
fore, those connections, as well as the auxiliary branch, can be safely removed without affecting the
primary task performance during the inference.

By such a design, we implicitly assume that besides the discovered discrete architecture, it is also
important to exploit the mixed models (where the architecture weights are between 0 and 1) in the
training procedure during the search phase. We note that, however, such importance of leveraging the
mixed-model training was not fully exploited in the popular one-shot gradient based NAS algorithms
(e.g.DARTS Liu et al. (2019b)). Specifically, the most widely used training procedure of a typical
one-shot gradient based NAS algorithm includes a search phase and a retrain phase2, which produces
the inconsistent learning objectives between those two phases. As a consequence, performance gap
or generalization issue is witnessed between the discovered mixed architecture and the retrained
single architecture Xie et al. (2019); Li et al. (2019).

Our method does not suffer from this issue, because all the primary-to-auxiliary connections are
cut off in our evaluation, regardless of a mixture model or a single model they converge to. The
only requirement of our method is to restrict the architecture weights associated with the auxiliary-
to-primary connections converging to a small value. Our NAS algorithm without a retrain phase
makes it meaningful to exploit features and gradients from the auxiliary branch during the search
phase, as the searched model (with the auxiliary-related computations removed) is directly used
for evaluation. We achieve this using a `1 regularization on the auxiliary-to-primary architecture
weights, which gradually cuts off all the auxiliary-to-primary during the search phase. We do not
impose constraints on the primary-to-auxiliary connections. This method is shown in Fig. 1 (Right).

Formally, let w be the model weights, denote the architecture weights for the auxiliary-to-primary
connections as αP = {αPij , ∀(i, j) with i ≤ j} where αPij is for the connection from the auxiliary
layer i to the primary layer j, denote similarly the architecture weights for the primary-to-auxiliary
connections as αA = {αAij , ∀(i, j) with i ≤ j}, our optimization problem becomes:

min
αP ,αA,w

LP(P(αP ,w)) + LA(A(αA,w)) +R(αP), with R(αP) = λ||αP ||1, (10)

where LP is the loss function for the primary task, LA is the loss function for the auxiliary task,
R is the regularization term on αP with λ as the regularization weight. P = {Pi,∀i} are all the
fused primary features with Pi as that of the i-th layer, and A = {Ai,∀i} are all the fused auxiliary
features with Ai as that of the i-th layer. Similar to Eq. 9, Pi and Ai are:

Pi(α
P ,w) = OP

(
Pi−1, α

P
0,iA0, ..., α

P
i−1,iAi−1

)
, (11)

Ai(α
A,w) = OA

(
Ai−1, α

A
0,iP0, ..., α

A
i−1,iPi−1

)
. (12)

Note that, being different from Aux-G, NAS is necessary for this method to exploit the auxiliary
features, as it is used to gradually cut off the auxiliary-to-primary connections.

3.4 FUSION OPERATION

We design a unique fusion operation for both of our methods, so as to better illustrate the merit of
the proposed novel network connections. There are two principles to design the fusion operation: i)
the fusion operation can take an arbitrary number of input features, and ii) there is a negligible cost
on both parameters and computations in Pi(αP ,w) of Eq. 11 with αP as all 0.

Existing researches discussed the fusion operations on several input features, such as those based
on weighted-sum Misra et al. (2016), attention Liu et al. (2019d), and neural discriminative dimen-
sionality reduction (NDDR) Gao et al. (2019), where both Liu et al. (2019d) and Gao et al. (2019)
leverage 1x1 convolution for feature transformation. Besides the extension of taking arbitrary input
features, our method also integrates the advantages of those methods, where we implement heavier

2The two-phase training procedure is needed because the search phase usually converges to a mixed model
with the architecture weights between 0 and 1, thus the retrain phase comes up to prune the mixed model and
retrain a single model with a fixed architecture for evaluation.

6

Published as a conference paper at ICLR 2024

Activation

Figure 3: The illustration of the proposed fu-
sion operator. Note that the auxiliary features
(in orange color) are concatenated by its ar-
chitecture weights. The dash line indicates
that the regularized NAS objective in Eq. 10
enables to cut off the whole auxiliary compu-
tations (also the following 1x1 conv due to 0
input). (Best view in colors.)

computations (i.e., 1x1 convolution) on the
inference-removable features and negligible compu-
tations (e.g., BatchNorm and ReLU) on the feature
that remains during the inference3.

As show in Fig. 3, we implement the fusion op-
eration in Eqs. 11 and 12 with feature concate-
nation, 1x1 convolution, summation, normalization,
and activation, where [·] demotes a feature con-
catenation along the channel dimension, Activ and
Norm can be ReLU and BatchNorm. Additionally,
BilinearInterp is applied to each input feature
when necessary before concatenation, it resizes the
input features to the output spatial resolution, we
omit it from Eqs. 13 and 14 for simplicity.

Pi(α
P ,w) = Activ

(
Norm

(
Pi−1 + 1x1 conv([αP0,iA0, ..., α

P
i−1,iAi−1])

))
(13)

Ai(α
A,w) = Activ

(
Norm

(
Ai−1 + 1x1 conv([αA0,iP0, ..., α

A
i−1,iPi−1])

))
(14)

Equation 13 enables to discard the heavier 1x1 convolution when αP are all 0 (as constrained
by R(αP) in Eq. 10), which introduces negligible computation from a BatchNorm and a ReLU.
Specifically, when introducing fusion operations in n layers, there are only additionally 2n parame-
ters (i.e., β, γ from BatchNorm), 2n summations and 2n productions (both from BatchNorm), and
n truncations (from ReLU). Those cost is negligible because at most n is the number of layers in
a network (e.g., at most n is 16 for VGG-16, 50 for ResNet-50, and 12 for ViTBase). Equation 14
does not introduce additional inference cost as it can be removed as a whole during the inference.

4 EXPERIMENTS

We fully assess our methods following the taxonomy in Table 1. We first show that our methods can
be incorporated with the optimization-based methods. Then, we evaluate our methods against the
architecture-based methods across various datasets, network backbones, and task combinations:

Network Backbones. We evaluate our methods on both CNNs and Transformers, i.e., VGG-16
Simonyan & Zisserman (2015), ResNet-50 He et al. (2016), and ViTBase Dosovitskiy et al. (2021).

Datasets. We perform our experiments on the NYU v2 Silberman et al. (2012), the CityScapes
Cordts et al. (2016), and the Taskonomy Zamir et al. (2018) datasets.

Tasks. Six tasks are performed including semantic segmentation, surface normal prediction,
depth estimation, monocular disparity estimation, object classification, and scene classification.
We detail the task losses and the evaluation metrics in Appendix B.

We implement Aux-G with two granularities: Aux-G-Stage with linked connections at the last
layer of each stage, and Aux-G-Layer with linked connections at every layer within each stage.
We allow the bi-directional links for Aux-NAS. We restrict the fusion operation to only receive the
features within 3 layers, i.e., the i-th layer fusion operation only receive features of i − 3, i − 2,
i − 1 layers from the other task, where (αP , αA) and w are trained alternatively by sampling two
non-overlapped batches Gao et al. (2020). We give more details in Appendix C and analyze the
architecture convergence in Appendix C.

4.1 COMPARISON WITH OPTIMIZATION-BASED METHODS

Our architecture-based methods are mathematically orthogonal to, and can be incorporated with,
the optimization-based methods. In this section, we compare and incorporate our methods with four
MTL methods: Uncertainty Kendall et al. (2018), DWA Liu et al. (2019d), PCGrads Yu et al.
(2020), CAGrads Liu et al. (2021a), and one existing auxiliary learning GCS Du et al. (2020).
We also implement an auxiliary learning variant of PCGrads, i.e., PCGrads-Aux, which always

3Note that it is direct to include multiple candidate fusion operations in the search space using NAS, but
chasing the fusion-op of each layer is problem-depend (thus distracting) and beyond the scope of this paper.

7

Published as a conference paper at ICLR 2024

NYU v2
Primary: Seg Primary: Normal

(%) (↑) Err (↓) Within t◦ (%) (↑)
mIoU PAcc Mean Med. RMSE 11.25 22.5

Single 33.5 64.1 15.6 12.3 19.8 46.4 75.5
Aux-Head 34.7 65.4 15.3 11.7 20.0 48.4 75.9
Adashare 35.0 65.6 14.8 11.5 18.8 50.3 77.2
Adashare-Aux 35.0 65.7 14.4 11.1 19.1 51.2 78.3
Aux-G-Stage 35.4 65.9 14.1 10.7 18.4 52.0 79.0
Aux-G-Layer 35.6 65.9 14.4 11.0 18.8 50.8 78.7
Aux-NAS 36.0 66.1 14.2 10.6 18.9 52.4 79.0

Table 3: Semantic segmentation and Surface normal prediction
on NYU v2 using VGG-16, with the other task as the auxiliary task.

CityScapes
Primary: Seg

(%) (↑)
mIoU PAcc

Single 68.3 94.5
Aux-Head 70.0 94.6
Adashare 70.3 94.7
Adashare-Aux 70.1 94.8
Aux-G-Stage 70.1 94.8
Aux-G-Layer 70.2 94.8
Aux-NAS 71.1 95.0

Table 4: Semantic seg. on
CityScapes using VGG-16
with disparity as aux. task.

NYU v2, Primary: Seg
(%) (↑)

mIoU PAcc
Aux-Head 34.7 65.4
Aux-Head + Uncertainty 35.2 65.6
Aux-Head + DWA 35.3 65.7
Aux-Head + CAGrad 34.9 65.4
Aux-Head + PCGrad 35.0 65.5
Aux-Head + PCGrad-Aux 35.2 65.7
Aux-Head + GCS 35.3 65.9

Aux-G-Stage 35.4 65.9
Aux-G-Layer 35.6 65.9
Aux-NAS 36.0 66.1
Aux-NAS + Uncertainty 36.0 66.3
Aux-NAS + DWA 36.0 66.1
Aux-NAS + CAGrad 35.9 66.0
Aux-NAS + PCGrad 36.0 66.3
Aux-NAS + PCGrad-Aux 36.2 66.3
Aux-NAS + GCS 36.3 66.5

Table 2: Comparison with the opt-based
methods on NYU v2 semantic seg., with
surface normal prediction as auxiliary.

projects the auxiliary gradients to the primary task. Next,
we first show the (vanilla) performance of those meth-
ods on the basic Aux-Head network with a fully shared
encoder and separated heads for different tasks, then we
report the performance integrating our networks. We con-
duct semantic segmentation experiments on NYU v2 with
surface normal estimation as the auxiliary task.

The results are shown in Table 2, which illustrates
that all of the proposed networks without incorporating
the optimization-based approaches have already outper-
formed the best vanilla optimization-based methods. This
might imply the superior of the soft parameter sharing ar-
chitecture methods in dealing with the negative transfer
over the optimization-based methods Xin et al. (2022);
Shi et al. (2023). Moreover, our performance can be
further improved by incorporating with the optimization-
based approaches.

4.2 COMPARISON WITH ARCHITECTURE-BASED
METHODS

Note that our methods exhibit single task inference cost, which is not ensured in many state-of-the-
art architecture-based methods as shown in Table 1. Therefore, besides the Single and Aux-Head
baselines, we compare with Adashare Sun et al. (2020) as its inference cost is equal or less than
that of a single task. For more fair comparisons, we implement an auxiliary learning variant of
Adashare, where for the primary task, we fix the select-or-skip policy as all 1’s and remove its
sparsity regularization. This produces Adashare-Aux with the same inference cost of ours.

4.2.1 DIFFERENT PRIMARY-AUXILIARY TASK COMBINATIONS

This section is to show that our methods are consistently outperforms the state-of-the-art methods
across different primary-auxiliary combinations. We use NYU v2 Silberman et al. (2012) dataset to
conduct our experiments. We carry out two different primary-auxiliary semantic segmentation and
surface normal estimation combinations, where each of them serves as the primary task and the other
is the auxiliary. We use the same network backbone and the same losses as Sect. 4.1. Table 3 show
that our methods outperforms the baselines for all the experiments. And our Aux-NAS outperforms
Aux-G, as Aux-NAS leverages the additional auxiliary features, which formulates a much larger
capacity in the NAS search space, therefore it achieves a better convergence.

4.2.2 DIFFERENT DATASETS

To further assess the applicability of our methods across datasets, Table 4 show that our methods
consistently outperform other baselines, when using auxiliary monocular disparity estimation to
assist the primary semantic segmentation on CityScapes dataset. We also perform object and scene
classification tasks on Taskonomy dataset in Appendix D.

8

Published as a conference paper at ICLR 2024

4.2.3 DIFFERENT BACKBONES
NYU v2, Pri-

mary: Normal
Err (↓) Within t◦ (%) (↑)

Mean Med. RMSE 11.25 22.5

Single 14.6 12.9 17.7 43.2 80.8
Aux-Head 14.8 13.2 17.9 41.9 80.1
Adashare 13.2 11.4 16.8 49.7 82.2
Adashare-Aux 12.9 11.0 16.7 51.9 85.5
Aux-G-Layer 12.6 10.7 15.7 52.3 85.9
Aux-NAS 12.5 10.3 15.6 53.8 85.9

Table 5: Surface normal prediction on NYU v2 as-
sisted by segmentation using ViTBase. We do not
have Aux-G-Stage as no Stage concept in ViTBase.

This section is to show the robustness of our
methods across single-task backbones. We
validates this on both ViTBase with a DPT
decoder Ranftl et al. (2021) in Table 5 and
ResNet-50 in Appendix E, which demon-
strate that the proposed methods consistently
outperform other state-of-the-art. We also
verify that our methods are applicable to het-
erogeneous backbones, by integrating a pri-
mary ResNet-50 and an auxiliary VGG-16 in Appendix F.

4.2.4 SCALABILITY TO MORE AUXILIARY TASKS

NYU v2, Pri-
mary: Normal

Err (↓) Within t◦ (%) (↑)
Mean Med. RMSE 11.25 22.5

Aux-G-Layer (1) 12.6 10.7 15.7 52.3 85.9
Aux-NAS (1) 12.5 10.3 15.6 53.8 85.9
Aux-G-Layer (2) 12.5 10.6 15.5 52.7 86.1
Aux-NAS (2) 12.2 10.2 15.3 54.5 86.7

Table 6: Scalability to more auxiliary tasks. (1) and
(2) denote the number of auxiliary tasks.

Our method maintains a consistent single-
task inference cost with more auxiliary tasks.
Moreover, our training complexity scales
linearly with the number of auxiliary tasks.
This is because i) linear network Growth: as
we focus solely on the primary task perfor-
mance, givenK auxiliary tasks, we only link
K inter-task connections from each auxil-
iary task to the primary task. This is in con-
trast to (K + 1)K/2 inter-task connections for all the task pairs in the soft parameter sharing MTL
methods Gao et al. (2019; 2020); Misra et al. (2016); Ruder et al. (2019); ii) linear NAS complexity
w.r.t. the network size: the single-shot gradient-based NAS algorithm has a linear complexity, as
proved in Sect. 2.3 of Liu et al. (2019b). We discuss in details in Appendix A.

We perform surface normal estimation as the primary task on NYU v2 using ViTBase, where we
use i) semantic segmentation, and ii) semantic segmentation and depth estimation, as the auxiliary
task(s). Table 6 shows that the performance of our method can be further improved with more
auxiliary tasks. The average forward-backward time of each 20-sample batch for 1 and 2 auxiliary
tasks (i.e., 2 and 3 tasks including the primary task) are 0.337s and 0.556s (roughly 3/2 times of
0.337s), demonstrating the linear scalability of our training complexity to more auxiliary tasks.

5 ABLATION ANALYSIS

Seg. (%) (↑)
Gradient Feature NAS mIoU PAcc
X 35.4 65.9
X X 35.7 66.0
X X X 36.0 66.1

Table 7: Effects of the auxiliary gradi-
ents, the auxiliary features, and the NAS
training.

In this section, we first show the effects of our design,
i.e.the effects of the Auxiliary Gradients, the Auxiliary
Features, with and without the NAS training. We perform
ablations using VGG-16 on NYU v2 with semantic seg-
mentation as the primary task, to study the effects of the
auxiliary gradients, the auxiliary features, and the NAS
training, respectively. Our results in Table 7 demonstrate
that i) NAS improves the method which only exploits the
auxiliary gradients (i.e., Aux-G-Layer) by discovering the
best locations of the primary-to-auxiliary connections, and ii) our Aux-NAS further boost the per-
formance of the Aux-G method with NAS, as it also leverages the auxiliary features.

6 CONCLUSION

We aim to exploit the additional auxiliary labels to improve the primary task performance, while
keeping the inference as a single task network. We design a novel asymmetric structure which
produces changeable architectures for training and inference. We implement two novel methods
by exploiting the auxiliary gradients solely, or by leveraging both the auxiliary gradients and fea-
tures with neural architecture search. Both of our methods converges to an architecture with only
primary-to-auxiliary connections, which can be safely removed during the inference to achieve a
single-task inference cost for the primary task. Extensive experiments show that our method can be
incorporated with the optimization-based approaches, and generalizes to different primary-auxiliary
task combinations, different datasets, and different single task backbones.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (62306214,
62325111, 62372480), Natural Science Foundation of Hubei Province of China (2023AFB196),
Knowledge Innovation Program of Wuhan-Shugung Project (2023010201020258).

REFERENCES

Youhei Akimoto, Shinichi Shirakawa, Nozomu Yoshinari, Kento Uchida, Shota Saito, and Kouhei
Nishida. Adaptive stochastic natural gradient method for one-shot neural architecture search. In
ICML, pp. 171–180, 2019.

Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understand-
ing and simplifying one-shot architecture search. In ICML, 2018.

David Bruggemann, Menelaos Kanakis, Stamatios Georgoulis, and Luc Van Gool. Automated
search for resource-efficient branched multi-task networks. In BMVC, 2020.

Hong Chen, Xin Wang, Chaoyu Guan, Yue Liu, and Wenwu Zhu. Auxiliary learning with joint task
and data scheduling. In ICML, 2022.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In ICML, 2018.

Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai, and
Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gradient sign
dropout. In NeurIPS, 2020.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. In CVPR, 2016.

Lucio M Dery, Yann Dauphin, and David Grangier. Auxiliary task update decomposition: The good,
the bad and the neutral. In ICLR, 2021.

Lucio M Dery, Paul Michel, Mikhail Khodak, Graham Neubig, and Ameet Talwalkar. Aang: Au-
tomating auxiliary learning. In ICLR, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2021.

Yunshu Du, Wojciech M Czarnecki, Siddhant M Jayakumar, Razvan Pascanu, and Balaji Lakshmi-
narayanan. Adapting auxiliary losses using gradient similarity. arXiv preprint arXiv:1812.02224,
2020.

David Eigen and Rob Fergus. Predicting depth, surface normals and semantic labels with a common
multi-scale convolutional architecture. In CVPR, 2015.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In ICLR, 2019.

Yuan Gao, Jiayi Ma, Mingbo Zhao, Wei Liu, and Alan L Yuille. NDDR-CNN: Layerwise feature
fusing in multi-task cnns by neural discriminative dimensionality reduction. In CVPR, pp. 3205–
3214, 2019.

Yuan Gao, Haoping Bai, Zequn Jie, Jiayi Ma, Kui Jia, and Wei Liu. MTL-NAS: Task-
agnostic neural architecture search towards general-purpose multi-task learning. arXiv preprint
arXiv:2003.14058, 2020.

Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and Edward Choi. Mor-
phnet: Fast & simple resource-constrained structure learning of deep networks. In CVPR, pp.
1586–1595, 2018.

10

Published as a conference paper at ICLR 2024

Michelle Guo, Albert Haque, De-An Huang, Serena Yeung, and Li Fei-Fei. Dynamic task prioriti-
zation for multitask learning. In ECCV, 2018.

Pengsheng Guo, Chen-Yu Lee, and Daniel Ulbricht. Learning to branch for multi-task learning. In
ICML, 2020.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian
Sun. Single path one-shot neural architecture search with uniform sampling. arXiv preprint
arXiv:1904.00420, 2019.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. In ICLR, 2016.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsuruoka, and Richard Socher. A joint many-task
model: Growing a neural network for multiple nlp tasks. In EMNLP, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pp. 770–778, 2016.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In ICCV, pp. 1398–1406, 2017.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In CVPR, 2018.

Iasonas Kokkinos. Ubernet: Training auniversal convolutional neural network for low-, mid-, and
high-level vision using diverse datasets and limited memory. In CVPR, 2017.

Vitaly Kurin, Alessandro De Palma, Ilya Kostrikov, Shimon Whiteson, and M. Pawan Kumar. In
defense of the unitary scalarization for deep multi-task learning. In NeurIPS, 2022.

Guohao Li, Guocheng Qian, Itzel C Delgadillo, Matthias Müller, Ali Thabet, and Bernard Ghanem.
Sgas: Sequential greedy architecture search. arXiv preprint arXiv:1912.00195, 2019.

Lukas Liebel and Marco Körner. Auxiliary tasks in multi-task learning. arXiv preprint
arXiv:1805.06334, 2018.

Baijiong Lin, Feiyang Ye, Yu Zhang, and Ivor Tsang. Reasonable effectiveness of random weight-
ing: A litmus test for multi-task learning. In ICLR, 2022.

Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qingfu Zhang, and Sam Kwong. Pareto multi-task learning. In
NeurIPS, 2019.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent for
multi-task learning. In NeurIPS, 2021a.

Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan L. Yuille, and
Li Fei-Fei. Auto-deeplab: Hierarchical neural architecture search for semantic image segmenta-
tion. In CVPR, June 2019a.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
ICLR, 2019b.

Liyang Liu, Yi Li, Zhanghui Kuang, Jing-Hao Xue, Yimin Chen, Wenming Yang, Qingmin Liao,
and Wayne Zhang. Towards impartial multi-task learning. In ICLR, 2021b.

Shikun Liu, Andrew J. Davison, and Edward Johns. Self-supervised generalisation with meta aux-
iliary learning. In NeurIPS, 2019c.

Shikun Liu, Edward Johns, and Andrew J Davison. End-to-end multi-task learning with attention.
In CVPR, pp. 1871–1880, 2019d.

Shikun Liu, Stephen James, Andrew Davison, and Edward Johns. Auto-lambda: Disentangling
dynamic task relationships. Transactions on Machine Learning Research, 2022.

11

Published as a conference paper at ICLR 2024

Yifan Liu, Bohan Zhuang, Chunhua Shen, Hao Chen, and Wei Yin. Auxiliary learning for deep
multi-task learning. arXiv preprint arXiv:1909.02214, 2019e.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In ICCV, pp. 2755–2763, 2017.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Philip S. Yu. Learning multiple tasks with deep
relationship networks. In NeurIPS, 2017.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In ICCV, pp. 5068–5076, 2017.

Kevis-Kokitsi Maninis, Ilija Radosavovic, and Iasonas Kokkinos. Attentive single-tasking of multi-
ple tasks. In CVPR, pp. 1851–1860, 2019.

Jieru Mei, Yingwei Li, Xiaochen Lian, Xiaojie Jin, Linjie Yang, Alan Yuille, and Jianchao Yang.
AtomNAS: Fine-grained end-to-end neural architecture search. In ICLR, 2020.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks for
multi-task learning. In CVPR, pp. 3994–4003, 2016.

Aviv Navon, Idan Achituve, Haggai Maron, Gal Chechik, and Ethan Fetaya. Auxiliary learning by
implicit differentiation. In ICLR, 2021.

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. arXiv preprint arXiv:1802.03268, 2018.

René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction.
In ICCV, 2021.

René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun. Towards robust
monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. TPAMI, 44(3),
2022.

Amelie Royer, Tijmen Blankevoort, and Babak Ehteshami Bejnordi. Scalarization for multi-task
and multi-domain learning at scale. In NeurIPS, 2023.

Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

Sebastian Ruder, Joachim Bingel, Isabelle Augenstein, and Anders Søgaard. Latent multi-task ar-
chitecture learning. In AAAI, 2019.

Shreyas Saxena and Jakob Verbeek. Convolutional neural fabrics. In NIPS, pp. 4053–4061, 2016.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In NeurIPS,
2018.

Baifeng Shi, Judy Hoffman, Kate Saenko, Trevor Darrell, and Huijuan Xu. Auxiliary task reweight-
ing for minimum-data learning. In NeurIPS, 2020.

Guangyuan Shi, Qimai Li, Wenlong Zhang, Jiaxin Chen, and Xiao-Ming Wu. Recon: Reducing
conflicting gradients from the root for multi-task learning. In ICLR, 2023.

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and sup-
port inference from rgbd images. In ECCV, pp. 746–760, 2012.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

Ximeng Sun, Rameswar Panda, Rogerio Feris, and Kate Saenko. Adashare: Learning what to share
for efficient deep multi-task learning. In NeurIPS, 2020.

Mihai Suteu and Yike Guo. Regularizing deep multi-task networks using orthogonal gradients.
arXiv preprint arXiv:1912.06844, 2019.

12

Published as a conference paper at ICLR 2024

Simon Vandenhende, Stamatios Georgoulis, Bert De Brabandere, and Luc Van Gool. Branched
multi-task networks: Deciding what layers to share. In BMVC, 2020a.

Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans, Dengxin Dai,
and Luc Van Gool. Multi-task learning for dense prediction tasks: A survey. arXiv preprint
arXiv:2004.13379, 2020b.

Sam Verboven, Muhammad Hafeez Chaudhary, Jeroen Berrevoets, and Wouter Verbeke. Hydalearn:
Highly dynamic task weighting for multi-task learning with auxiliary tasks. arXiv preprint
arXiv:2008.11643, 2020.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search. In CVPR, 2019.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS: stochastic neural architecture search.
In ICLR, 2019.

Derrick Xin, Behrooz Ghorbani, Ankush Garg, Orhan Firat, and Justin Gilmer. Do current multi-task
optimization methods in deep learning even help? In NeurIPS, 2022.

Dan Xu, Wanli Ouyang, Xiaogang Wang, and Nicu Sebe. Pad-net: Multi-tasks guided prediction-
and-distillation network for simultaneous depth estimation and scene parsing. In CVPR, pp. 675–
684, 2018.

Yongxin Yang and Timothy Hospedales. Deep multi-task representation learning: A tensor factori-
sation approach. In ICLR, 2017.

Jianbo Ye, Xin Lu, Zhe Lin, and James Z. Wang. Rethinking the smaller-norm-less-informative
assumption in channel pruning of convolution layers. In ICLR, 2018.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. In NeurIPS, 2020.

Amir R. Zamir, Alexander Sax, William B. Shen, Leonidas J. Guibas, Jitendra Malik, and Silvio
Savarese. Taskonomy: Disentangling task transfer learning. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 2018.

Yiheng Zhang, Zhaofan Qiu, Jingen Liu, Ting Yao, Dong Liu, and Tao Mei. Customizable architec-
ture search for semantic segmentation. In CVPR, 2019.

13

Published as a conference paper at ICLR 2024

A DETAILS OF THE TRAINING COST, THE NAS COMPLEXITY, AND THEIR
LINEAR SCALABILITY TO MORE AUXILIARY TASKS

We first emphasize that the models for both of our Aux-G and Aux-NAS methods increase linearly
with more auxiliary tasks, since we focus solely on the primary task performance. As shown in
Fig. 4, given K auxiliary tasks, we only have K inter-task connections from each auxiliary task to
the primary task and do not need the interactions between the auxiliary tasks. This is in contrast to
(K+1)K/2 inter-task connections for all the task pairs in the soft parameter sharing MTL methods
Gao et al. (2019; 2020); Misra et al. (2016); Ruder et al. (2019).

Figure 4: An illustration for the inter-task connections (i.e., the search space) of the auxiliary learn-
ing (ours) and the multi-task learning architectures. We use 3 tasks (or 1 primary task plus 2 auxiliary
tasks) as an example.

Our Aux-G model is simply trained by gradients, whose complexity is linear w.r.t. the model FLOPs
and scales linearly with more auxiliary tasks.

Our Aux-NAS model is trained using the single-shot gradient-based NAS algorithm, as proofs in
Sect. 2.3 and Eq. 8 of Liu et al. (2019b), the complexity of the single-shot gradient-based NAS
algorithm is linear w.r.t. the amount of the model weights w and that of the architecture weights α:

O(|w|+ |α|). (15)

As shown in Fig 4, given K auxiliary tasks, the amount of the model weights becomes (K + 1)|w|
(including the primary task), and that of the architecture weights becomesK|α| (as we only connect
the primary task to each auxiliary task, rather than between the auxiliary task pairs), therefore, the
training complexity of our Aux-NAS model is:

O((K + 1)|w|+K|α|), (16)

which scales linear with K. Our experiments in Table 6 of the main text also verifies the training
time for each batch increases from 0.337s for K = 1 to 0.556s for K = 2, where the ratio is
between (2+1) / (1+1) = 1.5 (for model weights complexity) and 2/1 = 2 (for architecture weights
complexity).

B DETAILS OF THE TASK LOSSES AND THE EVALUATION METRICS

Losses. We use the cross-entropy loss for semantic segmentation. Surface normal prediction is
trained by the cosine similarity loss. The scale and shift invariant loss Ranftl et al. (2022) is used for
depth estimation. We train disparity estimation with the mean squared error (MSE). For the object
classification and scene classification on Taskonomy, we use the `2 loss as the “groundtruth” given
by the Taskonomy dataset is the “soft classification labels” predicted by a large network.

Evaluation Metrics. For semantic segmentation, we evaluate with the pixel-wise accuracy (PAcc)
and mean intersection over union (mIoU). We use mean, median, and root mean square (RMSE)

14

Published as a conference paper at ICLR 2024

Taskonomy
Primary: Object Cls.

(%) (↑)
Top-1 Top-5

Single 34.3 65.9
Aux-Head 34.7 66.6
Adashare 35.9 67.1
Adashare-Aux 36.3 67.7
Aux-G-Stage 37.4 67.9
Aux-G-Layer 37.2 68.3
Aux-NAS 39.8 70.7

Table 8: Object classification on the Taskonomy dataset with scene classification as the auxiliary
task using the ResNet-50 network.

angle difference, also the percentage of pixels within 11◦ and 22.5◦ w.r.t. the ground truth for
surface normal prediction. We report the Top-1 and Top-5 accuracy for object classification.

C MORE TRAINING AND EVALUATION DETAILS

Training Strategy. We train our Aux-G method simply by gradients. For the Aux-NAS method, we
train (αP , αA) and w alternatively by sampling two non-overlapped batches similar to Gao et al.
(2020).

Evaluation Strategy. We simply cut off all the primary-to-auxiliary connections and the auxiliary
branch for inference, which remains a single-task model for the primary task without extra inference
computations.

More Training Details. We use 321× 321 image samples for the CNN backbones (i.e., ResNet-50
and VGG-16), and 224×224 image samples for the transformer backbone (i.e., ViTBase Dosovitskiy
et al. (2021)). The ViTBase backbone we used is vit base patch16 224 of the huggingface
timm package. We initialize the single task branches with the pretrained single task model weights.
For the fusion operations, we initialize the 1x1 convolution with all 0. We gradually increase λ of
Eq. 10 from 0 to 100 during the training, and initialize all α’s of Eqs. 13 and 14 to 0.5.

For the pixel-labeling tasks (i.e., semantic segmentation, surface normal prediction, depth estima-
tion, and monocular disparity estimation) on CNN backbones (i.e., ResNet-50 and VGG-16), we
use a Deeplab head with atrous convolutions Liu et al. (2022). We use a DPT head Ranftl et al.
(2021) for those tasks on Transformer backbone (i.e., ViTBase). For the classification tasks (i.e.,
object classification and scene classification), we simple use a Fully-Connected/MLP layer to map
the feature dimensions to the number of classes.

We use the official train/val split for the NYU v2 Eigen & Fergus (2015) and the CityScapes Cordts
et al. (2016) datasets. For the Taskonomy Zamir et al. (2018) dataset, we use the official Tiny split
of it.

We treat the convolutions layers of VGG-16, the residue blocks of ResNet-50, and the multi-head
attention blocks of ViTBase as the basic building elements to construct the inter-task connections.

D THE EXPERIMENTS ON THE TASKONOMY DATASET

In this section, we perform the object classification task, assisted by the scene classification, on the
Taskonomy dataset, using the Res-50 network. The Top-1 and Top-5 recognition rates are reported
in Table 8, which, accompanied with Tables 3 and 4 in the main text, demonstrate that our method
consistently outperforms the state-of-the-art on various tasks and datasets. 33.8 63.0 37.8 70.5
Multiple 34.1 66.1 37.8 71.2

E THE EXPERIMENTS WITH THE RESNET-50 BACKBONE

This section is to further demonstrate the robustness of our methods across backbones. We validates
this on a ResNet-50 network in Table 9, which, accompanied with Tables 3 and 5 in the main text

15

Published as a conference paper at ICLR 2024

NYU v2
Primary: Seg

(%) (↑)
mIoU PAcc

Single 34.1 65.0
Aux-Head 32.9 64.6
Adashare 33.3 64.9
Adashare-Aux 33.7 65.3
Aux-G-Stage 33.4 64.8
Aux-G-Layer 32.9 64.5
Aux-NAS 36.8 66.7

Table 9: Semantic segmentation on the NYU v2 dataset with surface normal prediction as the aux-
iliary task using the ResNet-50 network.

NYU v2
Primary: Seg

(%) (↑)
mIoU PAcc

Single 34.1 65.0
Aux-Head 32.9 64.6
Adashare - -
Adashare-Aux - -
Aux-G-Stage 33.2 64.5
Aux-G-Layer 33.0 64.6
Aux-NAS 36.2 66.1

Table 10: The experiments with heterogeneous backbones, where the primary semantic segmen-
tation using a ResNet-50 backbone is assisted by the auxiliary surface normal prediction using a
VGG-16 backbone. An example of the search space design is detailed in the text. The results of
Adashare and Adashare-Aux are not reported as they do not support heterogeneous backbones.

and Table 10 below, demonstrate that the proposed methods consistently improve the performance
across different single task backbones.

F THE EXPERIMENTS WITH HETEROGENEOUS BACKBONES OF RESNET-50
AND VGG-16

We note that the only requirement to construct our training network is the inter-task connections (i.e.,
the search space) of which form a Directed-Acyclic Graph (DAG) without loop, as loops contradict
the input and output. We also note that the our fusion operations in Eqs. 13 & 14 with spatial
bilinear-interpolation support feature with arbitrary spatial and channel sizes. We give an illustration
example for the training network with heterogeneous backbones in Fig. 5, where rectangles can be
the basic building elements of a CNN or Transformer network.

Figure 5: An illustration for the training network with heterogeneous backbones.

In the following, we show an experiment using the heterogeneous ResNet-50 (primary) and VGG-16
(auxiliary) backbones, for the semantic segmentation as the primary task assisted by the auxiliary
surface normal prediction, on the NYU v2 dataset. In this experiment, we design the DAG search
space by establishing connections between the 5 stages of VGG-16 and the 4 stages of ResNet-
50. Specifically, VGG-16 comprises 5 stages, with each stage consisting of 3 convolution layers,
expressing as [3, 3, 3, 3, 3]. On the other hand, ResNet-50 encompasses 4 stages with varying
numbers of residue/bottleneck blocks, specified as [3, 4, 6, 3] He et al. (2016). We evenly split
the third stage of ResNet-50 into 2 stages, resulting in a pseudo 5 stages ResNet-50 configuration
with [3, 4, 3, 3, 3] residue/bottleneck blocks in each stage. Finally, for each stage, we construct our

16

Published as a conference paper at ICLR 2024

search space by establishing connections between the VGG convolution layers and the ResNet-50
residue/bottleneck blocks within 3 layers, where, like all of our previous experiments, the i-th layer
fusion operation only receive features of i− 3, i− 2, i− 1 layers from the other task.

The results are shown in Table 10, demonstrating that our method efficiently support backbones with
heterogeneous structure. Note that under the constraint of the single task inference cost, it is difficult
to ensure the support of heterogeneous backbones by the existing architecture-based methods such
as Adashare Sun et al. (2020).

It is also worth emphasizing that the search space construction mentioned above serves merely as a
design example. Our method is fully compatible with any DAG search space without loop.

G ANALYSIS OF THE ARCHITECTURE CONVERGENCE

In the following, we analyze the convergence of the searched architecture based on the Aux-NAS
weights of Table 5.

Auxiliary-to-Primary Connections: The auxiliary-to-primary architecture weights converges to
very small values, with the maximum value is around 0.01, which indicates that our method success-
fully pruned those auxiliary-to-primary down. Notably, all the results reported in our manuscript
are the final single-task inference performance, where we manually set all the auxiliary-to-
primary architecture weights to 0 before conducting the evaluation. This guarantees our ob-
jective of ensuring the single-task inference cost.

Primary-to-Auxiliary Connections: Regarding the primary-to-auxiliary connections, as we do not
impose any regularization on their architecture weights (and those connections will be removed to
maintain a single-task inference regardless how they converge), those connections typically converge
to soft values between 0 and 1. We conducted 10 replicate runs with random seeds using the same
experimental setup as those in Table 5 (i.e., ViTBase on NYUv2), the mean and standard deviation
of min, max, mean, median statistics of the primary-to-auxiliary architecture weights are shown
below:

Prim-to-Aux Arch Weight min max mean median
mean 0.1561 0.5041 0.3073 0.2725
std 0.0110 0.0120 0.0117 0.0150

Table 11: Statistics of the converged primary-to-auxiliary weights. Those results are obtained by
performing 10 replicate runs of the experiment in Table 5.

The table above illustrates a small standard deviation of the converged primary-to-auxiliary weights
in replicate runs, indicating a degree of stability in our method. We attribute this small deviation in
the converged architectures to: i) for the model weights, initializing our network backbones with
converged single-task networks, and ii) for the architecture weights, we focus our architecture
search solely on cross-task connections without altering the network backbones.

17

	Introduction
	Taxonomy of Our Methods

	Related Work
	Methods
	The Asymmetric Architecture with Soft Parameter Sharing
	The Auxiliary Gradient Method
	The Auxiliary Feature and Gradient Method with NAS
	Fusion Operation

	Experiments
	Comparison with Optimization-based Methods
	Comparison with Architecture-based Methods
	Different Primary-Auxiliary Task Combinations
	Different Datasets
	Different Backbones
	Scalability to More Auxiliary Tasks

	Ablation Analysis
	Conclusion
	Details of the training cost, the NAS complexity, and their linear scalability to more auxiliary tasks
	Details of the task losses and the evaluation metrics
	More training and evaluation details
	The experiments on the Taskonomy dataset
	The experiments with the ResNet-50 backbone
	The experiments with heterogeneous backbones of ResNet-50 and VGG-16
	Analysis of The Architecture Convergence

