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Abstract

In this paper, we address the nonrigid shape matching with
outliers by a novel and effective pointwise map refinement
method, termed Locality Preserving Refinement. For accu-
rate pointwise conversion from a given functional map, our
method formulates a two-step procedure. Firstly, starting with
noisy point-to-point correspondences, we identify inliers by
leveraging the neighborhood support, which yields a closed-
form solution with linear time complexity. After obtained
the reliable correspondences of inliers, we refine the point-
wise correspondences for outliers using local linear embed-
ding, which operates in an adaptive spectral similarity space
to further eliminate the ambiguities that are difficult to han-
dle in the functional space. By refining pointwise corre-
spondences with local consistency thus embedding geomet-
ric constraints into functional spaces, our method achieves
considerable improvement in accuracy with linearithmic time
and space cost. Extensive experiments on public bench-
marks demonstrate the superiority of our method over the
state-of-the-art methods. Our code is publicly available at
https://github.com/XiaYifan1999/LOPR.

Introduction
Recognizing the similarity and correspondences between
two nonrigid shapes is a fundamental problem in computer
vision and graphics (Van Kaick et al. 2011; Sahillioğlu
2020), such as shape analysis (Hartman et al. 2023), style
transfer (Sumner and Popović 2004), pose estimation (Jiang
et al. 2022), and texture mapping (Ezuz and Ben-Chen
2017). Unlike rigid alignment with easy parametric model-
ing, the complexity of nonrigid transformation and the exis-
tence of unknown outliers make such a problem intractable
to be modeled.

Due to the approximately isometric nature of real-world
deformations, estimating the near-isometric maps for non-
rigid shape matching receives increasing research interests
in the last decades (Sahillioğlu 2020). Among the numerous
strategies for seeking the near-isometric maps (Deng et al.
2022), functional maps (Ovsjanikov et al. 2012) stands out
as an exemplary technique due to its high efficiency. Observ-
ing the isometric invariance based on the Laplacian-Beltrami
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Figure 1: Qualitative examples employing color transfer,
comparing our LOPR with representative state-of-the-art
Sinkhorn (Pai et al. 2021) by integrating them into the it-
eration of MWP. Notably, our LOPR exhibits the capacity to
recover more precise pointwise maps.

operator, functional map framework proposes the determi-
nation of a functional map operator that maps two spaces
of square-integrable functions on respective shape, thereby
efficiently recovering pointwise correspondences. This en-
ables algebraic operations on shape maps such as map sum,
and natural constraints become linear. For instance, local
volume preserving maps can be associated with the orthog-
onality of functional map matrices, near isometries corre-
spond to the commutativity of Laplacian operator, and con-
formal maps would preserve functional inner products. In-
terested readers are referred to the introductory course (Ovs-
janikov et al. 2016) for details.

Following the functional map framework, many works
are presented in recent years. BCICP (Ren et al. 2018) is
proposed to promote orientation preservation. PFM (Rodolà
et al. 2017) is devised for partial shape matching. More-
over, ZoomOut (Melzi et al. 2019), SmoothShells (Eisen-
berger, Lahner, and Cremers 2020), DiscreteOp (Ren et al.
2021), MWP (Hu et al. 2021), CFM (Donati et al. 2022),
and EDEO (Magnet et al. 2022) are proposed to enhance the
effectiveness of functional maps. The pointwise map recov-
eries of all these methods draw inspiration from ICP pro-
posed by original work (Ovsjanikov et al. 2012), i.e., an iter-



ative refinement based on Nearest Neighbor (NN) searches
between eigenfunction matrices. However, this strategy is
subject to the absence of topological constraints from Eu-
clidean space, thus hindering properties of pointwise corre-
spondences such as continuity and smoothness. Therefore, a
recurring problem of functional map framework lies in pro-
hibiting precise alignment at fine scales.

Several works (Rodolà, Moeller, and Cremers 2015;
Rodola, Möller, and Cremers 2017; Pai et al. 2021) have
noted this ill-defined problem of pointwise conversion from
a functional map. PMF (Vestner et al. 2017b) and Kernal-
Matching (Vestner et al. 2017a) both utilize the kernel den-
sity estimation for correspondence recovery but suffer from
high computational burden. Fast Sinkhorn Filters (Pai et al.
2021) combines the functional map representation with the
matrix scaling schemes from computational optimal trans-
port. Nevertheless, this method is limited to the spectral em-
bedding alignment, leaving room for improvement in terms
of accuracy and complexity. COMB (Roetzer et al. 2022)
devises a scalable combinatorial solver but suffers from high
computational burden. GCPD (Fan et al. 2022) generalizes
the kernel techniques based on classic CPD (Myronenko
and Song 2010) to achieve extrinsic alignment, however re-
lies on functional map methods as initialization. In conclu-
sion, pointwise map recovery, as a widely prevalent step
in functional map framework, exhibits evident limitations
while holding significant significance and broad value. Ex-
isting methods either suffer from inadequate precision (e.g.,
nearest neighbors) or incur significant time and memory cost
(e.g., assignment solvers).

In order to release above limitations, we propose an ef-
ficient framework named LOcality Preserving Refinement
(LOPR), which recovers more precise pointwise maps with
explicit continuity and smoothness constraints. Given noisy
pointwise maps have erroneous point-to-point correspon-
dences as outliers, we firstly establish a mathematical model
to differentiate between correct correspondences (inliers)
and outliers. Observing local consistency during various
deformations, we derive a closed-form solution with lin-
ear time and space complexity based on meshed neighbor-
hood support to ensure continuity between points. Subse-
quently, we perform re-matching for the outliers using reli-
able mapping relations from the inliers. Specifically, to es-
timate a weight matrix based on Locally Linear Embedding
(LLE), we construct neighborhoods from inliers for outliers
in source shape. Then, in the target shape, we select appro-
priate corresponding points from the K-nearest neighbors in
the spectral domain with the minimum reconstruction errors
of LLE, thus avoiding the previous ambiguity of search-
ing only the nearest neighbors in the spectral domain. Ad-
ditionally, our hyperparameters can be selected adaptively,
ensuring the applicability to diverse resolutions. Qualitative
comparisons with the recent pointwise map recovery method
Sinkhorn (Pai et al. 2021) are shown in Fig. 1.

In summary, the primary contributions are threefold:

- We propose a novel and effective framework for point-
wise map recovery, which embeds topological con-
straints from Euclidean spaces into the functional space.

- Drawing on the local consistency within nonrigid defor-
mations, we formulate a concise mathematical model that
offers a closed-form solution with linear complexity and
devise an outlier refinement strategy via LLE.

- We conduct extensive experiments on public datasets
to compare our method against state-of-the-art methods,
which demonstrate the superiority of our method.

Functional Maps Revisited
Given a shape modeled as a smooth compact two-
dimensional manifold M with area element dµ em-
bedded into R3, the space of square-integrable func-
tions on the manifold M is denoted by L2(M) ={
f :M→ R,

∫
M f(x)2dµ <∞

}
. With the symmetric

Laplace-Beltrami operator ∆M providing Fourier analy-
sis to manifold M, there exits an eigen-decomposition
∆Mφi = λiφi for i ≥ 1 with eigenfunctions {φi}i≥1 as
an orthonormal basis and eigenvalues 0 = λ1 < λ2 ≤ . . .
of L2(M). In this case, any function f ∈ L2(M) can be
represented as f(x) =

∑
i≥1 〈f, φi〉M φi(x), where 〈·〉M

denotes the inner product on the manifoldM.

Functional Correspondence
As proposed by the original work (Ovsjanikov et al. 2012),
the shape correspondences can be obtained by transferring
functions between manifolds. Given a pointwise map T :
M → N and a functional map TF : L2(M) → L2(N )
from a manifold M to another manifold N , the image of
any function f ∈ L2(M) is defined as TF (f) = f ◦ T−1.
Considering two orthonormal bases {φMi }i≥0 and {φNi }i≥0

of L2(M) and L2(N ), respectively, the functional image is
represented as:

TF (f) =
∑
j

∑
i

〈
f, φMi

〉
M

〈
TF
(
φMi

)
, φNj

〉
N︸ ︷︷ ︸

cji

φNj . (1)

We denote the matrix C = [cji] ∈ Rk×k, which maps the
first k eigenfunctions to efficiently approximate smooth cor-
respondence. The unknown matrix C encodes the functional
map TF , which can be derived by linear constraints such as
descriptor and segment preservation together with the oper-
ator commutativity (Ovsjanikov et al. 2012).

Pointwise Map Recovery
Given a functional map TF , the pointwise map T between
two discrete shapes can be reconstructed (Ovsjanikov et al.
2012). Specifically, for any point x onM, its corresponding
point T (x) inN is denoted as T (x) = arg maxy TF (δx)(y),
where δx is the delta-function at point x on the shape M.
As 〈δx, φi〉 = φi(x), if let the matrices ΦM ∈ Rm×k

and ΦN ∈ Rn×k respectively denote the first k Laplace-
Beltrami eigenfunctions of M and N , where each column
corresponds to an eigenfunction and each row to a point,
each row vector of C(ΦM)> represents transferred Fourier
coefficients of a point onM and has high similarity to a row
vector of Φ>N corresponding its matching point on N . By
Plancherel’s theorem (Penney 1975), the distances between



coefficient vectors of functions can be computed by L2 dif-
ferences. Thus, the pointwise map T can be recovered by
minimizing the following function:

min
T

m∑
i=1

∥∥∥C
(
ΦM(i)

)> − (ΦN (T (i))
)>∥∥∥

2
, (2)

where ΦM(i) represents the i-th row of matrix ΦM and
ΦN (T (i)) corresponds to the mapping point of point i on
N . Eq. (2) can be solved by nearest neighbor search via KD
tree. In this way, the high-dimensional pointwise maps T can
be recovered from the functional spaces, though may suffer
from limited accuracy and continuity.

Methodology
This section describes our LOPR for pointwise map recov-
ery in functional maps, where an effective framework based
on local consistency is proposed to refine noisy point-to-
point correspondences towards a better performance. Given
that pointwise maps incorporate correct correspondences
(inliers) and incorrect ones (outliers), our proposed frame-
work involves two steps: (i) distinguish inliers and outliers
from noisy pointwise maps; (ii) refine point correspondences
of outliers based on the reliable mapping of inliers.

Distinguish Inliers via Neighborhood Consensus
Given that X = {xi}mi=1 and Y = {yi}ni=1 are two vector
sets of vertex spatial coordinates on two discrete manifolds
M and N , respectively, denoting T0 ∈ Rm an initial point-
wise map that maps each point from M to a point of N ,
our first goal is to distinguish the inliers from a noisy point
correspondence set {xi,yT0(i)}mi=1.

Ideal Isometric Formulation Denoting I an unknown in-
lier set,C as a cost function, we have the following objective
to find the inliers in the isometric transformation case:

I∗ = arg min
I
C(I;X ,Y, T0, λ). (3)

Since the distance between two arbitrary points in M pre-
serves the same as that of their corresponding points in N ,
the cost function C can be defined as

C(I;X ,Y, T0, λ)=
∑
i∈I

∑
j∈I

(
d(xi,xj)−d(yT0(i),yT0(j))

)2
+ λ(|T0| − |I|), (4)

where d is the geodesic distance, and |T0| = m. The first
term of Eq. (4) restricts the variance of geodesic distances
between any two point pairs, and the second term discour-
ages the outliers with a balance parameter λ > 0. Ideally,
this cost function should be minimized to zero.

General Shape Matching Real applications generally re-
quire the acquisition and analysis about nonrigidly de-
formable objects. Though complex nonrigid deformations
produces non-isometric maps, the topology of local struc-
ture is consistent. In discrete setting, the point distribution

in a local region is preserved even after a severe deforma-
tion. Thus, we have a more general form of Eq. (4):

C(I;X ,Y, T0, λ) =
∑
i∈I

1

|Nxi
|+ |NyT0(i)

|( ∑
j|xj∈Nxi

(
d(xi,xj)−d(yT0(i),yT0(j))

)2
+

∑
j|yT0(j)∈NyT0(i)(

d(xi,xj)− d(yT0(i),yT0(j))
)2)

+ λ(|T0| − |I|), (5)

where Nx denotes the neighborhood of vertex x, which is
x’s adjacent points under triangular meshing. Due to the se-
vere deformations, we only assume the distance preserves in
a local (neighboring/adjacent) region, therefore, the distance
d in Eq. (5) is:

d(xi,xj) =

{
0, xj ∈ Nxi

1, xj /∈ Nxi

, (6)

and we also have a similar definition for d(yi,yj).
Let a binary vector p be the correctness of correspon-

dences, where pi = 1 represents an inlier (xi,yT0(i)), oth-
erwise an outlier. Substituting Eq. (6) into the cost function
Eq. (5), we have

C(p;X ,Y, T0, λ) =
m∑
i=1

pi
|Nxi
|+ |NyT0(i)

|

( ∑
j|xj∈Nxi

d(yT0(i),yT0(j))

+
∑

j|yT0(j)∈NyT0(i)

d(xi,xj)

)
+ λ
(
m−

m∑
i=1

pi
)
. (7)

In this case, the topological constraints based on locality
consistency are invariant to translation, rotation, and scale,
facilitating the robustness for various deformations.

Optimization To minimize the cost function Eq. (7), we
reformulate it by merging the terms related to pi as:

C(p;X ,Y, T0, λ) =

m∑
i=1

pi(ci − λ) + λm, (8)

where ci is defined as the disparity score:

ci = 1− 2ni
|Nxi
|+ |NyT0(i)

|
, (9)

and ni = count(j|xj ∈ Nxi ,yT0(j) ∈ NyT0(i)
) is the num-

ber of shared elements in two neighborhoods. We note that
ci is approximate to 0 if (xi,yT0(i)) is an ideally correct cor-
respondence.

Since a surface usually consists of a vary large number
of vertices (e.g., ten thousands), it is necessary to consider
not only a single neighborhood. Thus to better describe the
structure of local region, we extend the disparity score ci
into

c̃i =
ci +

∑
j|xj∈Nxi

cj

1 + |Nxi |
, (10)



and the cost function is updated as

C(p;X ,Y, T0, λ) =

m∑
i=1

pi(c̃i − λ) + λ|T0|. (11)

Eq. (11) shows that any correspondence with c̃i > λ pro-
duces a positive term to increase the cost function, while that
with c̃i < λ leads to a negative term thus decreasing the ob-
jective. λ is a balance factor that determines the trade-off
between two terms in Eq. (4), i.e., the higher value of λ, the
smaller and more reliable the set I is.

Apparently the consensus score {c̃i}mi=1 can be computed
in advance. Given triangular meshing and mapping T0 of
two manifolds, therefore, the optimal p minimizing Eq. (11)
can be obtained by:

pi =

{
1, c̃i ≥ λ,
0, c̃i < λ,

i = 1, . . . ,m. (12)

Hence, the optimal inlier set I∗ is:

I∗ = {i|pi = 1, i = 1, · · · ,m}, (13)

which is a reliable estimation not only satisfying local con-
sistency, but also possessing well continuity due to the con-
straint of adjacent relations.

Correspondence Refinement via LLE
An reliable inlier set I can be used to refine the correspon-
dences of outliers. To this end, we propose a local geomet-
ric constraint based on Locally Linear Embedding (LLE)
(Roweis and Saul 2000). Exploiting the local consensus
prior, LLE embeds the topology of a local region into a low-
dimensional manifold, which learns a better distance metric
with strong stability.

Specifically, we divide the vertex set X into two parts: XI
indicates inliers with correct correspondences, and XO de-
notes the outlier with mismatches. We also have similar YI
and YO for Y . Next, we show how to choose a correspond-
ing vertex from YO for each point in XO based on reliable
maps (XI ,YI), which introduces geometric constraints in
Euclidean space.

Firstly, for each point xOi of XO, we search its K1 nearest
neighbors from XI with the L2 distance of their coordinates
on manifoldM, obtaining a neighborhood set NK1

xOi
:

NK1

xOi
= K1-NNsearch(xOi ,X I), (14)

In this step, nO neighborhood sets will be generated, where
nO = |XO| is the number of points in XO.

Secondly, to derive a weight matrix W ∈ RnO×K1 , we
minimize the reconstruction errors measured by the follow-
ing cost function:

E(W) =

nO∑
i=1

∥∥∥∥∥∥xOi −
K1∑
j=1

Wijxi,j

∥∥∥∥∥∥
2

, s.t. ∀i,
K1∑
j=1

Wij = 1,

(15)
where ∀i,xi,j ∈ NK1

xOi
, j = 1, . . . ,K1, and the topology of

vertex distribution is preserved in the weight matrix W via

Algorithm 1: Locality Preserving Refinement for Pointwise
Map Recovery
Input: A pair of discrete manifolds M and N with bases
ΦM and ΦN and a functional map C
Parameter: λ
Output: pointwise map T

1: Obtain T0 by selecting nearest neighbors by Eq. (2);
2: Calculate disparity scores {ci}mi=1 by Eq. (10);
3: Determine optimal inlier set I∗ by Eq. (13);
4: Construct neighborhoods {NK1

xOi
}nOi=1 by Eq. (14);

5: Compute matrix W by minimizing Eq. (15);
6: Obtain outlier map TO by Eqs. (16) and (17);
7: Obtain T by combining TO and TI from I∗;

the neighboring point relationship. We can efficiently solve
Eq. (15) for Wij by the least squares.

Thirdly, we seek the corresponding vertex yOTO(i) from
YO to xOi fromXO, so as to obtain the pointwise map TO for
outliers. We solve this in an embedded manifold represen-
tation using the spectral similarity. Specifically, we obtain
K1 corresponding points TI(NK1

xOi
) of neighborhood NK1

xOi
by pointwise map TI . Then, we find the K2 nearest neigh-
bors between the column vectors of C(ΦOM)> and (ΦON )>

as the spectral neighborhoods, where ΦOM/Φ
O
N ∈ RnO×k is

the matrix consisting of the row vectors of ΦM/ΦN corre-
sponding to outliers XO/YO, respectively. Next, the corre-
spondence yOTO(i) of vertex xOi can be chosen as the vertex
with minimal reconstruction error from the spectral neigh-
borhood NK2

C(ΦOM(i))>
:

TO(i) = arg min
j|ΦN (j)∈NK2

C(ΦOM(i))>

∥∥∥∥∥yj −
K1∑
k=1

Wikyi,k

∥∥∥∥∥
2

,

(16)
where the spectral neighborhood

NK2

C(ΦOM(i))>
= K2-NNsearch(C(ΦOM(i))>, (ΦON )>),

(17)
and ∀i, xOi ∈ XO, yi,k ∈ TI(NK1

xOi
), k = 1, . . . ,K1. Fi-

nally, the pointwise maps TI for inliers and TO derived from
Eq. (16) form a full pointwise map T . The overall algorithm
flow is described in Algorithm 1.

Spectral ambiguity is the main issue that degrades the
pointwise map recovery, which occurs when two points are
not correct correspondence but with the highest similarity
in Fourier coefficients. This happens when those two points
are intrinsically symmetric, such as the left and right elbows
of a human body; or two correct matching points are not
the most similar in spectral domain. These stem from the
limited constraints in low-dimensional functional space. To
avoid this, we combine topological and functional spaces by
constructing correspondences based on geometric LLE un-
der relaxed spectral constraints (i.e., K2 nearest neighbors).
As shown in Fig. 2, the correspondence refinement via LLE
can effectively reduce spectral ambiguity during an iterative
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Figure 2: A visual illustration about the process of our
LOPR, where LLE refinement for outliers after distinguish-
ing inliers yields noticeable improvements.
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Figure 3: Parameter analysis of λ. Performance of LOPR un-
der different λ values is evaluated using the mean and stan-
dard deviation of errors (Red), with the average time dis-
played on the right (Blue).

functional map framework. Additionally, for simple match-
ing pair of shapes, we provide a cutoff condition to avoid
redundant iterations, i.e., the inlier set no longer grows, at
which point the cardinality of inlier set can be regarded as a
metric for evaluating the pointwise maps.

Parameter Setting
Our method introduces three hyperparameters, i.e.,
λ,K1,K2. We show how to set them in the following.

Parameter λ is the crucial threshold to determine the in-
lier set I. To find an appropriate value, we select 200 shape
pairs from the FAUST dataset (Bogo et al. 2014) as the test
set, and use the whole LOPR for pointwise map recovery of
MWP (Hu et al. 2021). Fig. 3 shows that λ can be set to 0.2
to balance the geometric errors and the runtime.

Parameter K1 determines the number of nearest neigh-
bors in Eq. (14), which is used to construct local manifold
representations in Eq. (15). Intuitively, a higher value of K1

is associated with stronger local geometric constraints but
more time consumption. Considering a larger set I can sup-
port more nearest neighbors for LLE, we empirically set
an adaptive value for K1 w.r.t. the cardinality of I, e.g.,
K1 = d|I|/100e, where d·e means rounding up.

As in Eq. (17), K2 is the number of nearest neighbors
searched in the spectral domain. As mentioned before, the
larger the inlier set I is, the more effective the local topo-
logical constraints preserved by matrix W in Eq. (15), and
consequently the larger the range over which suitable coun-
terparts can be selected by Eq. (16). Therefore, it is proper

for K2 to be proportional to |I|, e.g., K2 = d|I|/1000e.
Since I is obtained by neighborhood consensus acting on

initial pointwise map T0, hence K1 and K2 are closely re-
lated to T0. For a pair of shapes, the more accurate T0 is, the
larger the inlier set |I| is. Therefore, the larger values of K1

andK2 lead to more accurate pointwise map results but with
higher computational cost.

Computational Complexity
Our LOPR involves two main steps, namely inlier identifi-
cation and correspondence refinement. In the first step, the
computational cost is determined by the procedure of ob-
taining the disparity score ci for each point. Given the ad-
jacencies provided by the shape meshing, the computational
complexity is O(N), where N is the number of points on
manifoldM.

The computational consumption of the second step de-
pends on two K-nearest neighbor searches using K-D
tree, and the complexities are O((K1 + NO) logNO) and
O((K2 + NO) logNO), where NO is the number of out-
liers on manifoldM. Since K1 � NO and K2 � NO, the
time complexity of the second step can be simply written as
O(NO logNO) and space complexity as O(NO).

Since NO and N belong to the same order of magnitude,
therefore the proposed LOPR has linearithmic complexity
for both time and space w.r.t. the number of points N on the
manifold, which guarantees high efficiency of our method.

Experiments
In this section, we apply our LOPR to challenging shapes
from several public datasets and compare it with classical
and state-of-the-art approaches.

Implement Details
Datasets Four public datasets are used in our exvluation
experiments:

• FAUST (Bogo et al. 2014) contains a total of 100 shapes,
representing 10 poses of 10 different human subjects, ex-
hibiting significant variations across different subjects.
Each shape comprises 6890 element vertices, making it
applicable even for computationally demanding meth-
ods. For quantitative evaluation, we randomly selected
300 shape pairs, encompassing both isometric and non-
isometric deformations.

• TOSCA (Bronstein, Bronstein, and Kimmel 2008) pro-
vides 76 shapes divided into 8 distinct categories (rang-
ing from human to animal), with almost every shape
containing 10k vertices. Our experimental evaluation in-
volves all isometric shape pairs, totaling 414 pairs.

• SCAPE (Anguelov et al. 2005) contains 71 registered
meshes representing different poses of the same human
subject. Each of these meshes consists of 12500 vertices.
We randomly selected 200 matching pairs for quantita-
tive evaluations.

• TOPKIDS (Lähner et al. 2016) consists of 26 non-
intersecting manifold shapes, which are generated by
merging self-intersecting parts of the shapes from KIDS
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Figure 4: Evaluations of our LOPR with other methods on FAUST, SCAPE, TOPKIDS, and TOSCA datasets with CQCs.

Target GCPD LOPR GT

Figure 5: Qualitative demonstration using color transfer. In
each row of results, the first and last shapes represent the
target and source shapes matched with the ground truth re-
spectively, the second shape depicts the result of GCPD,
while the third shape represents the result of our LOPR. The
shapes in the topmost row originate from SCAPE, those in
the second row are sourced from TOPKIDS, and the ones in
the bottom row are from TOSCA.

dataset (Rodola et al. 2014) thus highly challenging.
We randomly selected 200 matching pairs from low-
resolution shapes (each mesh contains approximately
10k vertices) for quantitative evaluations.

Evaluation Princeton benchmark protocol (Kim, Lipman,
and Funkhouser 2011) is used to evaluate the accuracy of
shape matching. Specifically, given a ground-truth corre-
spondence (x,y∗) where x ∈ X and y∗ ∈ Y , the error
for obtained correspondence (x,y) is calculated by relative
geodesic distance between y and y∗ normalized by diame-
ter of Y: ε(x) =

dgeo (y,y∗)√
area (Y)

. We employ the Correspondence

Quality Characteristics (CQC) curves (Kim, Lipman, and
Funkhouser 2011), which depict the percentages of matches
that have geodesic errors no greater than r, and the average
geodesic error across all vertices on the shapeM, to quan-
tify the correspondence quality.

Competitors The competitor methods include ICP (Ovs-
janikov et al. 2012), BCICP (Ren et al. 2018),

Methods FAUST SCAPE TOPKIDS TOSCA

SmoothShells 0.0442 0.1175 0.1625 0.0198
MWP 0.0100 0.0096 0.0502 0.0171
Sinkhorn 0.0089 0.0096 0.0515 0.0175
GCPD 0.0084 0.0087 0.0709 0.0159
LOPR 0.0070 0.0091 0.0466 0.0157

Table 1: Average relative geodesic errors of our LOPR and
state-of-the-arts on four public datasets, where the bold in-
dicates the best.

ZoomOut (Melzi et al. 2019), DiscreteOp (Ren et al.
2021), SmoothShells (Eisenberger, Lahner, and Cremers
2020), MWP (Hu et al. 2021), Sinkhorn (Pai et al. 2021),
and GCPD (Fan et al. 2022).

Settings The matching results in SHOT (Tombari, Salti,
and Di Stefano 2010) descriptor space are used as initializa-
tion for ICP, BCICP, DiscreteOp, and MWP. GCPD uses the
results of MWP as the input. Sinkhorn and our LOPR are
used to recover pointwise maps of MWP with 5 discrete fil-
ters and 4 iterations. For all competitors, we use the settings
and codes provided online by their authors. In particular, the
number of eigenfunctions is uniformly set to 500, which for
ZoomOut is the maximal dimension of its upsampling iter-
ations. As suggested by its authors, GCPD is initialized by
MWP with 200 eigenfunctions, and the subsequent smooth-
ing model is still based on a 500-dimensional eigenfunction
space. All experiments are conducted on a PC with Intel(R)
Core i9-9920X CPU at 3.50GHz, using MATLAB R2018a.
And K-nearest neighbor search is accelerated by GPU.

Results Analysis
The quantitative evaluations on four public datasets in-
clude CQC curves and average errors, which are shown in
Fig. 4 and Table 1, respectively. MWP (Hu et al. 2021),
Sinkhorn (Pai et al. 2021), and GCPD (Fan et al. 2022), as
the recent State-Of-The-Art (SOTA) methodologies, exhibit
evident advantages over their predecessors, notably demon-
strated on the FAUST, SCAPE, and TOPKIDS datasets.
Notably, GCPD, as a SOTA advancement, employs MWP
to initialize an externally-deformation-based probabilistic
model and demonstrates decent performances. However, our
method consistently achieves lower average errors across the
majority of datasets, as illustrated in Table 1. Qualitative
comparisons between our LOPR and GCPD are provided
in Fig. 5, where the second row comes from the TOPKIDS
dataset (see the third sub-figure in Fig. 4 for quantitative



MWP+NN MWP+Sinkhorn MWP+LOPR GTTarget

Figure 6: Qualitative comparisons for NN, Sinkhorn, and our
LOPR on MWP using color transfer. The shapes in the top-
most row originate from SCAPE, those in the second row
are sourced from TOPKIDS, and the ones in the bottom row
are from TOSCA. Best viewed zoomed in.

Methods FAUST SCAPE TOPKIDS Wolf Michael

#Vertices 6890 12500 10399 4344 10000

SmoothShells 98.957 161.03 113.68 56.979 112.54
MWP 1.8358 4.3591 3.6495 0.8974 3.1439
GCPD 9.3658 20.146 14.184 2.8385 12.615
Sinkhorn 24.072 101.70 63.872 10.010 64.415
LOPR 3.9523 13.357 9.4687 1.4258 7.1651

Table 2: Average runtime (in seconds) demonstration of
our LOPR and state-of-the-art on different resolutions. We
present the results on FAUST, SCAPE, and TOPKIDS
datasets and two models (Wolf and Michael) of TOSCA.

analysis). These visual comparisons underscore LOPR’s su-
perior capability to address intricate matching pairs, exem-
plified by challenging datasets such as TOPKIDS.

In addressing the pointwise map recovery problem,
analogous methods include classical Nearest Neighbors
(NN) (Ovsjanikov et al. 2012) and the recent Sinkhorn (Pai
et al. 2021) method. To visually contrast our method with
these competitors, qualitative comparisons are showcased in
Fig. 6. Here, the functional map matrices are uniformly com-
puted utilizing MWP with 5 iterations. Evidently, our LOPR
excels in recovering more accurate pointwise correspon-
dences comparing classic NN and representative Sinkhorn,
which is due to that both of them lack the geometric con-
straints of the external space.

Furthermore, the average runtimes of our method, along-
side several representative techniques, are reported in Ta-
ble 2. The runtime of our LOPR is deemed acceptable
across various shape resolutions, notably outpacing the re-
cent methods Sinkhorn and GCPD due to the linearithmic
computational complexity of our LOPR.

Partial Matching
The geometric constraints embedded in LOPR are rooted
in the consistency of small local regions during deforma-
tion, displaying broad applicability, even in partial matching.

Target Sinkhorn LOPR GT Target Sinkhorn LOPR GT

Figure 7: Qualitative examples of our LOPR and Sinkhorn
on partial shape matching using color transfer. In each of
these two groups, the first and last shapes are target and
source shapes with ground-truth matching, the second shape
is the result of Sinkhorn, and the third shape represents the
results of our LOPR.
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Figure 8: Quantitative comparisons for our LOPR and state-
of-the-art functional map methods on partial shape match-
ing tasks. The left contains the CQC curve of each method,
while the right shows the cumulative distribution function of
runtime, where the point situated along the curve at coordi-
nates (x, y) signifies that the runtime does not exceed y for
a percentage of x% of the instances.

Employing the cuts dataset provided by Partial Functional
Correspondences (Rodolà et al. 2017), which encompasses
456 partial shapes spanning different classes of TOSCA,
we compare our LOPR with representative functional map
methods to achieve partial-to-full matching. Qualitative in-
stances of comparing our LOPR with SOTA Sinkhorn are
presented in Fig. 7, where our LOPR can achieve more accu-
rate and continuous pointwise maps, attributed to the weaker
generality of optimal transport modeling of Sinkhorn. From
quantitative CQC curves and runtime results illustrated in
Fig. 8, comparing with other functional map methods, our
method is capable of achieving competitive accuracy im-
provements within a moderate time cost.

Conclusion
In this paper, we propose a concise and efficient framework
for pointwise map recovery in functional maps to address
nonrigid shape matching, named LOcality Preserving Re-
finement (LOPR). The geometric constraints we apply are
based on local consistency, wherein small regions on a man-
ifold exhibit invariance across various deformations, includ-
ing nonrigid transformation. The process of LOPR involves
two steps, i.e., outlier identification based on neighborhood
support and correspondence refinement via LLE. Neighbor-
hood support enforces continuity among points within lo-
cal regions, while the utilization of LLE eliminates spec-
tral ambiguities such as intrinsic symmetries. Experimental
results on four benchmarks validate the superiority of our
LOPR over the state-of-the-art in terms of accuracy. More-
over, partial matching experiments underscore the generality
of LOPR for intricate deformations.
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Sahillioğlu, Y. 2020. Recent advances in shape correspon-
dence. The Visual Computer, 36(8): 1705–1721.
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